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Abstract

Shared autonomous electric vehicles (SAEV) represent a transfor-
mative shift in urban mobility, promising enhanced flexibility and sus-
tainability. This study investigates the impact of integrating SAEVs
into a taxi-hailing aggregator, focusing on their operational efficiency
and environmental benefits. Based on New York City trip data from
high-volume for-hire vehicle (FHV) services, a simulation is conducted
to model how such vehicles would operate, exploring fleet performance,
environmental impact, and revenue while considering constraints such
as charging infrastructure, fleet size, and real-time demand fluctuations
in an urban setting. The simulation evaluates key metrics, including
CO2 emissions, utilization, completed trips rate, and net revenue, com-
paring them with traditional 15-hour driver-based taxis and 24-hour
hailing service. Our results confirm the initial expectations, demon-
strating that SAEVs outperform traditional taxi services across all key
metrics, irrespective of fleet size. The simulation reveals that, on av-
erage, net revenue increased by over 250%, while CO2 emissions were
reduced by more than 100% compared to the benchmark services. In
comparison to 24-hour hailing services, SAEVs clearly offer advantages
in terms of revenue and environmental impact, though they do exhibit
a decline in operational efficiency. Importantly, this decline can be
mitigated through appropriate scaling of the SAEV fleet.



1 Introduction

The taxi industry represents a vast and rapidly expanding market. In ma-
jor cities like Beijing, the number of operational taxis exceeds 74,000 [28].
Globally, the ride-hailing segment is projected to generate approximately
US$172.50 billion in revenue in 2024, with a compound annual growth rate
(CAGR) of 4.33% expected between 2024 and 2029. By 2029, the market
is forecasted to reach over US$212.75 billion, with the number of users sur-
passing 2.3 billion [22|. These figures highlight not only the economic scale
of the industry but also emphasize the pressing need for innovation to ensure
its sustainability, operational efficiency, and environmental responsibility.

Despite its economic value, the taxi sector imposes a disproportionately
high environmental burden. Although taxis represent a small fraction of the
total vehicle population, they contribute approximately 16.78 million tons of
CO2 emissions annually in China alone [28]. This amount is nearly double
that of the national railway system, four times that of public buses, and 15
to 25 times higher than emissions from private vehicles on a per-unit basis
[28]. These statistics underscore the urgent need for decarbonization within
the urban mobility sector.

One of the widely proposed solutions to reduce emissions is carpooling.
As a result, recent research efforts have increasingly focused on shared ride
models, which are believed to reduce traffic congestion, lower environmental
impact, and improve transportation efficiency. However, empirical studies
show that carpooling often has a limited effect on overall platform revenue.
This is due not only to the operational difficulty of effectively matching pas-
sengers, but also to cannibalization effects, where lower-cost pooled rides
draw demand away from higher-priced solo rides [14]. In other words, while
carpooling may expand the market and improve vehicle utilization, it can re-
duce revenue from traditional services, thereby limiting its profitability. As
a result, carpooling is not well suited for growing profits, which is usually the
main goal for companies.

This tension between traditional ride-hailing services and carpooling ex-
plains why major platforms like Uber and Lyft have scaled back or even
discontinued their carpooling offerings in certain markets. Although car-
pooling contributes to reducing emissions by improving driver efficiency, it
does not generate sufficient revenue to be a sustainable business model in its
current form.

At first glance, it may seem that pricing mechanisms could solve the rev-
enue challenges of carpooling. In reality, this is not the case. On ride-hailing
platforms, like in other two-sided marketplaces, pricing is designed mainly to
balance demand and supply [5], rather than to maximize revenue per trip.



Price adjustments also directly affect service quality, for example by influenc-
ing passenger waiting times or driver earnings, both of which are critical for
platform stability. As a result, simply changing prices cannot overcome the
economic limits of carpooling without risking declines in efficiency or service
quality. This highlights the importance of broader optimization approaches,
where key indicators such as waiting time, fare levels, and pickup reliability
are jointly considered.

At the same time, the taxi and ride-hailing industries are reaching a struc-
tural ceiling in terms of revenue growth. Most of the existing optimization
tools-such as route-matching algorithms, demand forecasting, or incentive
schemes for drivers-have already been implemented by major platforms, but
their contribution to revenue growth has largely plateaued.

In some markets, the main barrier is not dispatch efficiency anymore,
but simply the lack of drivers. Russia already shows signs of this: there
are not enough active drivers to grow further. Although driver’s licenses are
split almost evenly between men and women, female participation in ride-
hailing remains very low. To cope with this, companies even run campaigns
to attract more women into driving. For example, Uber have introduced
campaigns to recruit more female drivers [17]. These efforts illustrate that
the industry is pressing against the boundaries of its current model, with
little room left for organic growth. As a result, firms and policymakers are
increasingly looking toward disruptive innovations to unlock the next wave
of transformation in urban mobility.

One potential solution, though costly and still under development, is the
integration of Shared Autonomous Electric Vehicles (SAEVs), which may of-
fer a way to address both environmental and revenue-related challenges simul-
taneously. The concept of SAEVs combines three elements. First, "Shared"
- the vehicle is not owned privately, but operated within car-sharing or ride-
hailing systems, ensuring higher utilization rates. Second, "Autonomous"
- the vehicle can operate without a human driver, which removes one of
the largest cost components in traditional ride-hailing services and there-
fore creates substantial potential for revenue growth. And third, "Electric" -
the vehicle runs on electricity and relies on charging infrastructure, thereby
reducing emissions compared to conventional fuel-powered fleets. Taken to-
gether, these features make SAEVs a promising technological innovation:
they not only offer environmental benefits, but also directly address the prof-
itability issue that carpooling alone cannot solve, primarily by eliminating
driver-related costs and enabling more flexible fleet operations.

The convergence of vehicle electrification and autonomous driving is ex-
pected to reshape urban mobility in near future. Electrification, supported
by breakthroughs in electric motor efficiency and battery technology, offers



substantial benefits such as reduced greenhouse gas emissions, improved en-
ergy efficiency, and lower operational costs [13].

However, transitioning to such transformative systems comes with sev-
eral challenges. These include economic barriers such as high upfront costs
and limited adoption incentives, environmental concerns surrounding battery
recycling, renewable energy sourcing, and infrastructure constraints such as
insufficient charging networks and urban-rural disparities [15]. Addressing
these challenges requires detailed insights into the operational dynamics and
impacts of integrating SAEVs within urban settings.

This research adopts a simulation-driven approach to explore the inte-
gration of SAEVs within a taxi-hailing platform. The simulation is designed
to dynamically alter key operational parameters-such as fleet size and charg-
ing infrastructure - to assess their impact on performance metrics, including
fleet efficiency, revenue, CO2 emissions and completed rides. Furthermore,
by comparing SAEVs operations to traditional taxi services and taxi-hailing
platform, the study evaluates potential revenue uplift and environmental
benefits. Through this approach, the research aims to provide actionable
strategies to optimize SAEV deployment and shed light on existing barriers.
While environmental impact and operational efficiency have been widely es-
timated in previous studies [11, 20, 28, 6, 4], this research places a specific
focus on the economic impact, as financial concerns remain one of the pri-
mary obstacles to SAEV adoption and a less-explored aspect of autonomous
mobility.

2 Theoretical Background

2.1 Urban mobility platforms

In recent years, app-based ride-hailing platforms such as Uber and Lyft have
significantly changed how urban transportation operates. Unlike traditional
taxi services, which use fixed pricing and limited dispatching, these plat-
forms connect riders and drivers through real-time algorithms. They act as
two-sided marketplaces that continuously manage supply and demand using
location data, pricing models, and dispatch algorithms.

Unlike traditional taxi services, platforms such as Uber have redefined
the logic of urban transport by treating it not just as a logistics problem,
but as a two-sided marketplace. Rather than simply building an app and
setting high prices to maximize short-term profits, taxi-hailing platforms
recognized a core dynamic: the value of the platform to one group (drivers
or riders) depends on the sustained participation of the other [18]. This
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interdependence creates what is known as a network effect, where growth on
one side reinforces growth on the other. To achieve long-term profitability,
the platform must first reach and maintain marketplace efficiency - a state
in which rides are matched quickly, wait times are minimized, and prices
remain competitive. This goal is achieved through the coordinated use of
dispatching algorithms and dynamic pricing mechanisms.

Dispatch algorithms on ride-hailing platforms no longer follow simplistic
first-in-first-out rules but instead rely on batching strategies, where multiple
rider requests and available drivers are collected over short time windows
and then matched via optimization algorithms [27]. This batching approach
leads to better spatial matching, reduced rider wait times, and improved
vehicle utilization. On the pricing side, platforms apply dynamic pricing
(DP) mechanisms - often called surge pricing - that adjust fares in real time
based on localized supply-demand imbalances. These pricing strategies are
grounded in market equilibrium models, which aim to set prices that balance
rider participation, driver supply, and en route time [5]. When jointly opti-
mized, matching and pricing mechanisms not only improve platform revenue
and capacity utilization but also mitigate structural inefficiencies such as the
Wild Goose Chase, where drivers chase fleeting demand signals across the
city, leading to increased empty travel and poor rider experience. Empirical
results based on Uber data demonstrate that joint optimization of dispatch-
ing and pricing algorithms significantly improves platform performance: it
reduces price volatility, increases driver utilization - the share of time drivers
spend actively transporting passengers - by over 10%, and enhances overall
welfare (defined as rider utility minus driver compensation costs) by ap-
proximately 2% [27]. These findings highlight the operational advantages of
integrated algorithmic control.

In addition to algorithmic innovations, platform-based models also im-
prove operational efficiency compared to traditional taxis. A study by Cramer
and Krueger (2016) found that Uber drivers spend approximately 30% more
time and 50% more distance on trips with passengers compared to taxi drivers
in the same cities [8]. These gains are attributed to superior matching al-
gorithms, higher platform density, and the use of flexible labor rather than
fixed vehicle supply. The results suggest that even before the deployment
of automation, digital ride-hailing already offers significant improvements in
asset utilization and supply responsiveness.

However, while these early innovations brought substantial benefits, fur-
ther optimization has become increasingly difficult. As noted by Yan et al.
(2020), the most accessible improvements - such as real-time routing and
surge pricing - have already been implemented and scaled [27]. New propos-
als for improving efficiency tend to focus on fine-tuning existing mechanisms
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or integrating them more closely, such as combining batching with pricing
algorithms. Although these strategies yield measurable gains, they are often
modest in scale and fall short of the disruptive impact seen when ride-hailing
platforms first emerged. This highlights a growing challenge in the field: it is
no longer sufficient to optimize isolated components, and at the same time,
it is increasingly difficult to develop novel mechanisms that meaningfully
outperform the current system. As a result, research and innovation in this
space are shifting toward marginal improvements rather than transformative
breakthroughs.

2.2 Service Quality Indicators and Optimization

Ride-hailing platforms are inherently multi-objective systems, where eco-
nomic outcomes and service quality are jointly shaped. In the SAEV con-
text, four families of performance indicators are particularly relevant: (i)
utilization efficiency (share of time vehicles spend serving passengers rather
than idling or charging), (ii) completed trip rate (the proportion of rider
requests successfully served), (iii) net revenue (aggregate economic return
from trips), and (iv) environmental impact (measured through operational
COy emissions). These dimensions reflect both user-facing service quality
and system-level sustainability.

In operational terms, pricing in conventional ride-hailing is often used
as a rapid lever to balance demand and supply [5]|, while fleet sizing and
vehicle allocation function as slower structural levers that determine long-
term availability. In SAEV fleets, the absence of driver churn reduces the
role of dynamic pricing, but charging downtime introduces new availability
constraints. As a result, utilization, completed trip rate, and revenue be-
come more directly dependent on charging infrastructure and repositioning
strategies.

For this reason, results are reported jointly across economic, operational,
and environmental dimensions. Emphasis is placed on identifying trade-offs,
such as higher utilization versus reduced service coverage, rather than on
optimizing a single metric in isolation.

2.3 Minimum Fleet Problem

As algorithmic innovation within ride-hailing platforms reaches a plateau,
researchers have increasingly turned to questions of system-level design and
resource allocation, with a particular focus on how to deploy fleets most effi-
ciently. A central question in this line of work is the Minimum Fleet Problem
(MFP) - how many vehicles are needed to meet a given level of demand while
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maintaining service quality. This problem lies at the intersection of opera-
tional efficiency and cost minimization.

One of the most influential studies in this domain, conducted by Spieser et
al. (2014), demonstrated that in an idealized urban setting like Singapore, a
centrally dispatched fleet of autonomous vehicles could satisfy total demand
with up to 60% fewer vehicles than the current taxi system, even without
ride-sharing [21]. This finding illustrated the enormous efficiency potential
of autonomy and centralized control. However, their model relied on strong
assumptions - such as full knowledge of future demand, negligible traffic, and
unlimited computing power - that do not hold in practice.

Further advancing the field, Vazifeh et al. (2018) used large-scale mo-
bility data from New York City to solve the MFP under real-world urban
dynamics [26]. Their approach combined origin-destination flows with time-
varying demand to determine the smallest fleet size capable of serving all
trips without delay. Remarkably, they found that only around 30% of the
current taxi fleet would be needed if trips were optimally assigned across time
and space. Their model provides a data-driven, network-aware lower bound,
revealing the extent of overcapacity in traditional systems and highlighting
the potential efficiency gains from algorithmically managed fleets.

2.4 Carpooling and Share-rides

With much of the operational optimization potential already exploited, plat-
forms are increasingly turning to product innovation as a means to grow
revenue. One prominent example is the introduction of shared ride options,
such as carpooling and ride-pooling, which aim to increase vehicle occupancy
and expand service offerings. However, as the following section will show, the
economic impact of these models is mixed, and their effect on platform rev-
enue is far from straightforward.

Although shared rides may increase the total number of passengers served
per hour, research has shown that this does not necessarily translate into
higher platform revenue. Lin et al. (2022) demonstrate that carpooling in-
troduces a cannibalization effect, where some riders who would otherwise pay
for a full-price solo ride switch to a discounted shared option [14]. As a result,
the marginal increase in rider volume is often offset by lower average fares,
limiting the revenue potential of shared mobility offerings. This substitution
effect is particularly pronounced in mature ride-hailing markets, where rider
expectations for convenience and speed remain high. Thus, while shared
rides improve vehicle utilization and reduce average cost per trip, they may
also reduce per-ride profitability for the platform.

Additionally, carpooling requires more complex matching algorithms, spa-
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tial forecasting, and pricing coordination to ensure that detours remain ac-
ceptable and rider satisfaction is maintained. These systems add complexity
to operations but do not always lead to higher profits. As Lin et al. (2022)
point out, the benefits of shared rides - such as lower prices or better access
- often go to the riders, not the platform. In many cases, platforms earn
less per trip when riders choose carpooling instead of more expensive solo
rides [14]. As a result, Uber and Lyft have discontinued their carpooling
services, despite gains in other areas such as reduced emissions or improved
vehicle utilization. This reflects a core challenge in mobility innovation: not
all efficiency improvements translate into economic sustainability.

2.5 Integration and Impication of Shared Autonomous
Electric Vehicles

The emergence of Shared Autonomous Electric Vehicles (SAEVs) offers a
promising path forward for transforming urban mobility systems. By com-
bining vehicle automation with electrification and shared ride capabilities,
SAEVs aim to address three critical dimensions of modern transportation: la-
bor cost reduction, emission mitigation, and fleet-level operational efficiency.
Unlike traditional taxi services or human-operated ride-hailing platforms,
SAEV systems allow for full centralization of dispatch, dynamic reposition-
ing, and optimized charging coordination - making them especially attractive
for future urban deployment.

Several simulation-based studies have highlighted the potential advan-
tages of SAEVs. Burns et al. (2012) pioneered early models demonstrating
that SAEVs can reduce mobility costs per mile by over 75% compared to
personal vehicles when scaled appropriately [4]. More recent research has
extended this by incorporating demand variability, energy constraints, and
urban traffic conditions. For instance, Chen et al. (2016) showed that electri-
fied autonomous fleets, if managed effectively, can outperform conventional
taxis on both environmental and economic metrics, particularly in cities with
dense travel demand and charging infrastructure [6].

However, SAEVs also introduce new logistical complexities, especially due
to their dependence on electric charging. Hyland and Mahmassani (2020)
emphasized that fleet performance declines sharply when charging station
congestion is not properly managed, with up to 20% effective capacity loss
observed [12]. Similarly, Sumitkumar and Al-Sumaiti (2024) explored the
interplay between SAEV deployment, energy consumption, and transporta-
tion economics. [23] Their study highlights that to realize the full potential
of SAEVs, operational strategies must be aligned with energy management
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policies. They propose a simulation framework for assessing social and eco-
nomic trade-offs, offering guidance on how to integrate SAEVs into urban
transport in ways that support both sustainability and efficiency goals. This
directly supports the approach taken in the present study, which examines
system-level behavior under energy, infrastructure, and service constraints.

Beyond operational factors, researchers increasingly recognize the broader
societal and policy implications of SAEV adoption. Almaskati et al. (2024)
reviewed over 200 studies and highlighted that SAEVs can reduce emissions,
improve accessibility, and dramatically cut parking demand [1]. However,
they also warned of unintended consequences: increased vehicle miles traveled
(VMT), reduced public transit use, and equity concerns if deployment is left
unregulated. Their findings emphasize that technology alone cannot ensure
sustainability - policy design, pricing schemes, and governance structures will
determine the actual societal outcomes.

Expanding this perspective, Milakis et al. (2017) proposed a ripple-effect
model of autonomous vehicle impacts, structured into three layers [16]. First-
order effects, such as improved road safety and fuel economy, are mostly
positive when SAEVs are electrified and shared. However, second-order ef-
fects, like induced demand due to lower travel costs and convenience, may
partially offset sustainability gains. Third-order effects -including long-term
shifts in land use, car ownership, and labor markets - remain speculative but
potentially transformative. These layered outcomes suggest that SAEVs can
either support or hinder broader mobility goals depending on their integra-
tion context.

2.6 Conceptual Discussion of SAEVs

Beyond the quantitative results of simulation, Shared Autonomous Electric
Vehicles (SAEVs) raise broader conceptual questions concerning their role
in urban mobility systems, social impacts, and integration into sustainable
city planning. This section outlines several of these dimensions, linking the
technical findings of this thesis to ongoing debates in transportation research
and policy.

SAEVs can be understood not merely as a fleet optimization problem, but
as a component of the emerging paradigm of Mobility-as-a-Service (MaaS).
Under MaaS, different transport modes are integrated into a seamless dig-
ital platform, allowing users to select from public transit, ride-hailing, car-
sharing, and micro-mobility options (Cohen & Kietzmann, 2014; Shaheen &
Cohen, 2020) [7, 19]. In this context, SAEVs could function either as com-
petitors to public transport or as complementary feeders to high-capacity
services. The simulation results in this thesis highlight that fleet and charg-
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ing constraints strongly affect reliability; in a MaaS framework, these con-
straints would influence whether SAEVs are positioned as a primary mode
or a last-mile connector.

One of the most debated aspects of SAEV adoption concerns its impact
on employment in the transport sector. Conventional taxi and ride-hailing
services employ hundreds of thousands of drivers worldwide. Replacing them
with autonomous fleets would reduce labor costs, as reflected in the revenue
gains observed in our results, but could also trigger significant job displace-
ment. Fagnant and Kockelman (2015) argue that automation may create
new opportunities in vehicle maintenance, fleet management, and charging
infrastructure, yet the scale of job losses among drivers is likely to dominate
in the short term [10]. This raises questions of social equity and the need for
policy interventions such as retraining programs.

Equity has emerged as a central concern in the autonomous mobility lit-
erature (Milakis et al., 2017) [16]. SAEVs, if deployed primarily in dense,
affluent districts, may exacerbate spatial and social inequalities. The results
of this study confirm that charging station distribution significantly affects
service availability. Without targeted policy, disadvantaged neighborhoods
may face worse service reliability. Almaskati et al. (2020) emphasize that
regulatory frameworks must account for spatial justice, ensuring that SAEV
systems do not deepen existing transport deserts but instead expand acces-
sibility [1].

Tirachini and Antoniou (2020) highlight the ambiguous relationship be-
tween autonomous vehicles and public transport [25]. On one hand, SAEVs
could draw passengers away from buses and metro systems, undermining
fare revenues and increasing congestion. On the other, they could comple-
ment mass transit by providing efficient first- and last-mile connectivity. The
simulation framework developed here does not explicitly model intermodal
substitution, but the observed sensitivity of waiting times and missed trips
suggests that SAEVs are unlikely to replace high-capacity transport modes in
peak demand scenarios without substantial oversupply. This points toward
a complementary rather than substitutive role in most urban contexts.

Electrification is often justified by its environmental benefits, yet the sus-
tainability of SAEVs must be evaluated holistically. Bauer et al. (2021) show
that charging congestion and grid constraints may limit the practical benefits
of electrification [2], while Silva et al. (2022) argue for life-cycle assessments
that include battery production and recycling [20]. The present study fo-
cuses on operational emissions, confirming substantial reductions relative to
internal combustion engine fleets. However, broader sustainability consider-
ations, such as rebound effects from induced demand, remain important for
long-term evaluation.
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Finally, SAEVs are often positioned as part of a "smart city" vision, where
data-driven mobility integrates with energy, land use, and environmental sys-
tems. Realizing this vision requires governance frameworks that ensure in-
teroperability, data transparency, and public accountability. Without these,
SAEV deployment risks being driven primarily by private platforms, with
outcomes that may conflict with collective urban goals. The simulation re-
sults in this thesis provide a technical perspective on operational constraints,
but achieving societal benefits will depend on governance choices far beyond
fleet optimization.

2.7 Policy and Societal Implications

The results of the simulation not only provide technical insights into the per-
formance of SAEVs but also carry broader implications for urban transport
policy, sustainability, and social equity. This section discusses the potential
policy relevance of the findings and highlights issues that extend beyond the
technical scope of the model.

A first implication concerns the relationship between SAEVs and existing
public transport networks. Studies such as Milakis et al. (2017) argue that
autonomous vehicles may either complement or compete with public transit,
depending on pricing and integration strategies [16|. If SAEVs primarily
replace bus and metro trips, overall congestion and emissions reductions may
be limited. Conversely, if they are strategically integrated as feeders to high-
capacity transit, SAEVs could enhance accessibility and reduce reliance on
private car ownership.

Equity is another crucial dimension. Previous research emphasizes that
transport innovations often disproportionately benefit afluent urban cores,
while peripheral or low-income neighborhoods face reduced access (Almaskati
et al., 2020) [1]. Our results confirm that charging infrastructure availability
strongly influences service reliability. If stations are clustered in commercial
districts, residents in underserved areas may experience longer waiting times
and higher rates of missed trips. Policymakers should therefore consider
subsidies or zoning regulations to ensure equitable distribution of charging
facilities and SAEV coverage.

The environmental benefits of SAEVs depend not only on vehicle technol-
ogy but also on the decarbonization of electricity grids. Bauer et al. (2021)
highlight that without sufficient renewable penetration, large-scale electrifi-
cation may shift emissions from tailpipes to power plants [2]. This creates an
urgent need for joint transport-energy planning: investments in SAEVs must
be coordinated with investments in clean energy generation, grid capacity,
and demand management.
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Market competition also plays a central role. As Vazifeh et al. (2018)
and Spieser et al. (2014) demonstrate, coordinated dispatch dramatically re-
duces the required fleet size [21], [26]. However, in unregulated markets with
multiple competing platforms, such coordination may be absent. Our results
suggest that without regulation, oversupply of vehicles could reduce utiliza-
tion, while undersupply would harm service reliability. Policymakers may
thus need to explore regulatory frameworks, such as fleet caps, congestion
pricing, or incentives for pooling, to balance efficiency and competition.

The COVID-19 pandemic has highlighted the vulnerability of urban trans-
port systems to sudden demand shocks. SAEV fleets, unlike conventional
taxis, cannot flexibly scale driver supply to meet surges. This implies that
resilience planning-through redundant capacity, dynamic pricing, or inte-
gration with emergency mobility plans-will be essential. Research such as
Almaskati et al. (2020) stresses that future mobility systems must be stress-
tested not only for average conditions but also for crisis scenarios [1].

2.8 Previous Simulation Modelling in SAEV research

Taken together, the literature indicates that the success of SAEVs hinges
on more than technological viability. Effective deployment requires careful
coordination across infrastructure, operations, policy, and user behavior. To
investigate these interactions systematically, researchers have increasingly
turned to simulation modeling as a primary tool for evaluating SAEV systems
under realistic urban conditions. Given the scarcity of large-scale real-world
deployments, simulation enables controlled exploration of how different fleet
configurations, charging logistics, and policy levers affect system performance
and societal outcomes.

Yet many studies model SAEVs in isolation, assuming either full demand
compliance, optimal routing, or instantaneous vehicle rebalancing. For exam-
ple, the influential study by Vazifeh et al. (2018) assumes perfect coordina-
tion, no charging constraints, and no idle time [26]. Similarly, energy-related
simulations often impose simplified rules for recharging, treating station avail-
ability and queuing as static or exogenous variables [6].

A particularly relevant contribution is the simulation study by Bauer et
al. (2021), which evaluates the cost, energy use, and environmental impact
of SAEVs operating in Manhattan [2]. Their model integrates vehicle re-
location strategies and detailed battery degradation dynamics, and places
strong emphasis on optimizing charging infrastructure and life-cycle emis-
sions. However, their simulation relies solely on yellow taxi data from 2015
and assumes a nearest-vehicle dispatch algorithm. It does not incorporate
batching or modern ride-hailing strategies, nor does it benchmark SAEV per-
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formance against existing human-operated services. As a result, while the
technical modeling is detailed, the system-level conclusions may be limited
in transferability to today’s platform-based mobility landscape.

Another major limitation is the lack of comparative evaluation. While
many models analyze SAEV systems in a vacuum, real-world policy decisions
require benchmarking against existing services, such as taxis or driver-based
ride-hailing. Without such comparisons, it is difficult to assess the true
marginal value of automation or electrification. Moreover, previous stud-
ies rarely explore performance degradation under constrained infrastructure,
leaving unclear how sensitive system efficiency is to real-world bottlenecks.

The preceding literature review highlights how platform-based ride-hailing
systems revolutionized urban mobility by treating transportation as a two-
sided marketplace governed by algorithmic pricing and dispatch. Early inno-
vations such as batching and surge pricing substantially improved efficiency,
utilization, and welfare. However, as these strategies matured, further perfor-
mance gains became harder to achieve, leading to diminishing returns from
algorithmic optimization alone. This prompted researchers to shift focus to-
ward system-level questions such as fleet sizing, capacity utilization, and the
integration of shared and autonomous vehicle technologies.

The literature on SAEVs identifies the potential of combining autonomy,
electrification, and sharing to address labor costs, emissions, and operational
efficiency. However, empirical and simulation-based studies often evaluate
SAEVs in isolation, under ideal dispatching or simplified charging scenar-
ios. Many fail to benchmark performance against conventional services or
explore how fleet behavior degrades under infrastructure constraints. Addi-
tionally, the broader societal consequences - such as equity concerns, transit
substitution, and induced demand - are often acknowledged but not directly
incorporated into operational models.

This thesis addresses several of these gaps by developing a simulation
framework that compares SAEVs against traditional taxi systems using real-
world NYC trip data. The model explicitly varies two critical levers: fleet size
and charging infrastructure capacity. It captures real-world system frictions
such as charging delays, idle time, and rejected trips, rather than assuming
optimal rebalancing or omniscient control. By benchmarking SAEVs against
driver-operated services, the simulation reveals where SAEVs outperform and
underperform across key performance dimensions. Rather than pursuing
theoretical optima, the model is used to stress-test deployment scenarios,
enabling more policy-relevant insights into how SAEVs can function under
urban constraints.
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3 Method

3.1 Data Description

This study uses a discrete-time simulation framework to evaluate the per-
formance of SAEVs in urban environments. The framework models SAEV
operations by simulating trips, vehicle movements, and charging processes
using real-world data from New York City’s Taxi and Limousine Commis-
sion (TLC). These include records from high-volume for-hire vehicle services
(HVFHS, e.g. Uber, Lyft), general FHV bases, and yellow/green taxis. Each
dataset provides trip-level information such as pickup and drop-off times, dis-
tances, locations, and fares, which are essential for reconstructing demand
patterns and calibrating the simulation.

3.2 Key Variables

Table 1 summarizes the most important fields across the different TLC trip
record datasets and their role in the simulation framework.

3.3 Example Record Sample

To illustrate the structure of the dataset, Table 2 shows a subset of HVFHS
records used in the simulation. Each row corresponds to a single trip com-
pleted by one of the licensed high-volume for-hire vehicle services in NYC.

3.3.1 Data Quality Issues

Before running the simulation, several anomalies were identified and ad-
dressed:

Trips with negative or zero duration, where dropoff_datetime < pickup_datetime.

Implausible distances (e.g., >100 miles within NYC boundaries).

Outlier fares, such as zero-fare rides or extremely high values inconsis-
tent with pricing rules.

Missing or inconsistent flags for shared rides in FHV and HVFHS
records, due to differences in reporting across platforms.

These preprocessing steps ensured that the simulation relied on clean,
consistent, and realistic input data.
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Table 1: Overview of key fields in NYC TLC trip records

Field

Description

Relevance for Simulation

pickup_datetime

dropoff_datetime

request_datetime

on_scene_datetime

PULocationID,
DOLocationID

trip_miles /
trip_distance

trip_time

base_
passenger_fare,
fare_amount

tips
driver_pay
(HVFHS)

tolls,
airport_fee,

Timestamp when the passenger
entered the vehicle

Timestamp when the passenger
left the vehicle

Time when passenger requested
the ride (HVFHS only)

Time when driver arrived at
pickup (HVFHS only)

TLC taxi zone IDs for pickup
and drop-off (1-263 zones)

Reported trip distance in miles

Trip duration in seconds

Base fare before tips, taxes, and
surcharges

Passenger tips (credit card only
in yellow /green)

Net driver compensation,
cluding tolls and tips

ex-

Itemized surcharges and fees

congestion_surcharge,

sales_tax, bcf

shared
_request_flag,

Indicates if passenger requested
and was matched to a pooled

shared_match_flag ride (HVFHS only)

Defines trip demand arrival pro-
cess and temporal patterns

Determines trip duration and
vehicle availability windows

Used to approximate waiting
time and measure service relia-
bility

Enables calculation of pickup
delays and dispatch efficiency

Encodes spatial distribution of
demand and enables zone-based
assignment strategies

Determines battery consump-
tion in SAEV scenario and trip-
level cost

Used for temporal vehicle avail-
ability and utilization calcula-
tion

Core component of revenue cal-
culations

Used for realistic driver-pay
benchmarks in baseline scenar-
ios

Important for comparison with
SAEVs, where driver costs are
eliminated

Reflected in net platform rev-
enue calculation

Relevant for studying carpooling
and comparing with SAEVs

Table 2: HVFHS sample

requestyatetime  oncencaatetime  pickupgatetime dropoffyatetime  PULocationID DOLocationlD  tripyiles tripime basejassengersare tolls bef  salesar  congestionurcharge airportyec tips  driver,ay
0 2024-01-01 00:21:47  2024-01-01 00:25:06  2024-01-01 00:28:08  2024-01-01 01:05:39 161 158 2.83 2251 15.61 0.0 125 4.05 2.75 0.0 0.0 4018

1 2024-01-01 00:10:56  2024-01-01 00:11:08  2024-01-01 00:12:53  2024-01-01 00:20:05 137 i 1.57 432 10.05 0.0 028 089 2.75 0.0 00 612

2 2024-01-01 00:20:04  2024-01-01 00:21:51  2024-01-01 00:2 2024-01-01 00:35:16 79 186 198 731 18.07 00 05 16 275 00 00 947

3 2024-01-01 00:35:46  2024-01-01 00:39:59  2024-01-01 00:41:04  2024-01-01 00:56:34 234 148 1.99 930 1717 0.0 047 152 2.75 0.0 00 1135

4 2024-01-01 00:48:19  2024-01-01 00:56:23  2024-01-01 00:57:21  2024-01-01 01:10:02 148 97 2.65 761 38.67 0.0 1.06 343 2.75 0.0 00 2863
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The simulation utilizes three datasets: The Trips Dataset, sourced from
NYC taxi records, contains historical ride-hailing data, including pickup and
drop-off locations, trip distance and duration, as well as request timestamps;
the Vehicle Dataset, which tracks car’s locations, battery levels, and oper-
ational states (e.g., idle, en route, or charging); and the Charging Station
Dataset, which contains information on station locations, occupancy, and
queuing status.

3.4 Simulation algorithm

The simulation process begins with the random initialization of the SAEV
fleet and charging stations, which are distributed across various urban zones
to reflect heterogeneous access to infrastructure. Each vehicle is assigned
a random starting location and a fully charged battery. Similarly charging
stations are placed at randomly selected locations with specified capacities.

Next, trip requests from the FHV dataset are used to simulate SAEV
behavior over historical completed rides. The simulation proceeds iteratively
in one-minute time steps. At each step T, all trip requests with timestamps
in the interval [T, T+1) minutes are selected for processing. Trip requests are
processed in batches (see Fig. 1), mimicking real-world dispatch strategies
used in industry to improve assignment efficiency and avoid short-sighted
matching (wild goose chasing). By considering multiple requests at once, the
algorithm can prioritize assigning a vehicle to a more suitable upcoming trip
rather than the nearest immediate one. Ride assignment is performed using
a greedy two-pass algorithm: in the first pass, the best available vehicle-
trip pairs are selected based on the shortest estimated pickup time, ensuring
that no vehicle or trip is assigned more than once. In the second pass, the
remaining valid pairs, already sorted by estimated pickup time and filtered
for availability, are processed iteratively, assigning the next-best pairs.

After each assignment round, vehicle states are updated to reflect progress
along the trip, changes in location, battery usage, and availability for future
assignments.

Battery consumption is modeled using a linear rule, where the battery
level is reduced proportionally to the distance traveled, based on an energy-
per-kilometer parameter defined at the start of the simulation. While re-
generative braking and acceleration dynamics are not explicitly modeled,
the average consumption rate is calibrated to reflect typical urban driving
behavior.

Through this design, the simulation reproduces SAEV operations under
empirically observed spatial and temporal demand patterns, allowing for real-
istic modeling of urban mobility flows, vehicle utilization, charging behavior,
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greedy_two_pass_assignment(valid_combinations):

valid_combinations = valid_combinations.sort_values( ).copy()

first_pass = valid_combinations.drop_duplicates( = ) .drop_duplicates(
assigned_trips, assigned_cars = (first_pass[ (first_pass[ D

remaining_combos = valid_combinations[~valid_combinations[ 1.isin(assigned_trips) & ~valid_combinations[ ].isin(assigned_cars)
1.copyQ)

second_pass = []

remaining_combos.empty:
remaining_combos = remaining_combos.sort_values( ).copy()

remaining_combos.empty:
mask = (~remaining_combos[ ].isin(assigned_trips)) & (
~remaining_combos[ ].isin(assigned_cars))
mask.any():

valid_rows = remaining_combos[mask]
valid_rows.empty:

best_row = valid_rows.iloc[0]
second_pass.append(best_row)
assigned_trips.add(best_row[ D
assigned_cars.add(best_row[ 1
remaining_combos = remaining_combos[
(remaining_combos| 1 != best_row[
(remaining_combos[ 1 != best_row[

1

second_pass_df = pd.DataFrame(second_pass)

best_assignments = pd.concat([first_pass, second_pass_df]

best_assignments

Figure 1: Trips assignment realization

and performance metrics.

A similar simulation structure is applied to two baseline configurations,
which model traditional taxi and ride-hailing services operating without bat-
tery charging constraints of SAEV operations. The first baseline represents a
conventional taxi fleet, where each vehicle operates on a fixed 15-hour shift,
reflecting standard labor schedules. In this model, trips are assigned to avail-
able vehicles without accounting for battery levels or charging needs, and the
cost structure includes driver commissions. The second baseline simulates a
24-hour ride-hailing platform (e.g., Uber or Lyft), where vehicles are contin-
uously available. Like the taxi model, it excludes charging infrastructure and
assumes conventional fuel-based vehicles. Both baselines are evaluated under
varying fleet sizes, enabling a comparative analysis of SAEVs against existing
service models in terms of efficiency, cost, and environmental impact.

3.5 Simulation metrics

To evaluate the effectiveness of Shared Autonomous Electric Vehicles (SAEVs)
compared to conventional taxi and ride-hailing services, several performance
metrics are defined. Each metric captures a different aspect of system behav-
ior and allows benchmarking across scenarios. Unlike abstract optimization

23



Initialization - randowmly allocate vehicles and charging T»\Fm\s‘tmcturg‘}
over locations.

Update vehicle states

Update car
o status
o=
gvelillpaics Update battery Update location
Tevel
) 15 b

Figure 2: SAEV simulation process

criteria, these metrics reflect operational realities that matter both for pas-
sengers, operators, and policymakers.

3.5.1 Utilization Rate

The utilization rate measures the proportion of time vehicles spend with pas-
sengers compared to their total time in service. A higher utilization indicates
that vehicles are serving riders more frequently and generating value instead
of idling or waiting for assignments. In practice, this metric is closely related
to the economic efficiency of the fleet: low utilization implies wasted capital
investment and insufficient demand matching, while excessively high utiliza-
tion may signal service saturation and long waiting times for customers. In
previous research, utilization has often been used as the primary measure
of efficiency for ride-hailing platforms, and the present study follows this
tradition while extending it to the SAEV context.

3.5.2 Missed Trips Rate

This metric captures the share of requests that remain unserved because no
vehicle was available within the acceptable waiting window. For passengers,
it reflects service reliability and directly impacts customer satisfaction. For
operators, high missed trip rates imply revenue losses and potential dam-
age to the platform’s reputation. Importantly, SAEV systems may exhibit
different patterns of missed requests compared to conventional fleets, since
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charging downtime reduces the number of active vehicles. Thus, missed trips
are not only a demand-supply balance indicator but also a proxy for how
infrastructure constraints affect real service levels.

3.5.3 Revenue and Profitability

Revenue serves as the central economic metric, representing the income gen-
erated from completed trips. In conventional taxi and ride-hailing models,
revenue must cover driver wages, fuel costs, and platform fees. By contrast,
in SAEV scenarios driver compensation is eliminated, shifting the cost struc-
ture heavily toward electricity and vehicle maintenance. This fundamental
change means that SAEVs may scale revenue more efficiently with demand,
especially in high-volume markets. Profitability also depends on policy fac-
tors such as congestion surcharges or subsidies for electric fleets, making it a
useful lens for economic comparison.

3.5.4 Environmental Impact

Reducing greenhouse gas emissions is one of the main motivations for elec-
trifying and automating urban mobility. The environmental metric in this
study is operational CO, emissions per trip, which directly depends on the
energy source powering the grid. Although the simulation abstracts away
from upstream factors such as battery production or recycling, the oper-
ational perspective already highlights the potential of SAEVs to drastically
cut emissions compared to internal combustion engine taxis. This aligns with
broader climate policies and offers a tangible way to compare different fleet
configurations in terms of sustainability.

4 Analysis of the results

4.1 Exploratory Data Analysis

This section focuses on EDA to understand what the data looks like, examine
its characteristics, and make sure it behaves as expected.

We observe that the average number of trips increases throughout the
week, peaking on Saturday when most people are off work, and subsequently
declining on Monday, as shown in Figure 3. Furthermore, there are noticeable
peaks in trip volume around 8:00 AM and 6:00 PM, illustrated in Figure 4,
which resemble a typical office-hours pattern. This pattern is particularly
pronounced on weekdays, whereas on weekends (Saturday and Sunday), the
number of trips tends to increase gradually throughout the day, reaching its
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maximum around 7:00 PM according to Figure 5. Overall, these dynamics
are consistent with expectations and reflect common urban mobility patterns
associated with work schedules and leisure activities.

Both the trip distance in the Figure 7 and fare amount in the Figure 6
distributions exhibit strong positive skewness and visually resemble exponen-
tial distributions. In each case, the majority of observations are concentrated
around 3 miles for distance and $18 for fares - followed by a sharp decline in
frequency as values increase. This pattern indicates a clear tendency toward
short, low-cost trips, typical for urban environment.

While the median trip distance stays about the same throughout the week,
both the average and the range of distances increase slightly on weekends,
as shown in Figure 8. This suggests that weekend trips are more varied and
often longer, possibly due to travel to the suburbs or across boroughs. In
contrast, fare amounts are slightly higher on weekdays and drop a bit on
weekends (Figure 9). This difference may be due to heavier weekday traffic,
especially in business areas, where delays can make trips more expensive.
On weekends, lighter traffic and more spread-out travel likely lead to lower
overall fares.

These observations are further supported by spatial trip patterns. As
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shown in the Figure 10, the volume of drop-offs Qutside of NYC' increases
notably on weekends, aligning with the interpretation that longer, inter-
borough or out-of-city trips are more frequent during this period. Also,
drop-offs at LaGuardia Airport gradually increase over the course of the week,
peaking on Friday, which likely reflects outbound business or leisure travel
behavior. Additionally, Midtown Center emerges as one of the most frequent
zones for both pick-ups and drop-offs throughout the weekdays, consistent
with its role as a major office and commercial district. This concentration of
weekday trips toward central business zones aligns with the observed fares
and trip distance dynamics.

The dataset shows clear and expected patterns of urban mobility, sup-
porting its appropriateness for further analysis. Weekday and weekend travel
behavior, as well as differences in trip distances and fares, reflect typical com-
muting and leisure trends in a large city. Patterns by time of day and day
of the week are especially important and should be carefully considered in
future analysis.

4.2 Hypothesis testing

The performance of SAEVs will be statistically compared to that of tradi-
tional taxis and hailing platforms in all defined metrics. In other words, a
formal hypothesis testing procedure will be conducted. Some of the selected
metrics are proportional (for example, utilization efficiency), which means
that standard t-test cannot always be directly applied without adjustments.
This is due to the fact that when two independent variables are combined
into a single metric, a joint distribution arises. Consequently, the assumption
of independence, which is fundamental to the Student’s t-test, is violated and
this formally invalidates the standard variance estimation. Nevertheless, it
remains reasonable to rely on the Student’s t-test, provided that appropriate
adjustments are made. Such adjustments can include the Delta Method [9]
or Linearization [3|. In practice, there is no meaningful difference between
the two approaches for the purposes of this research [24].

Another issue which arises is the choice of aggregation time when com-
puting the metrics. If the aggregation window is too large (for instance, a
week), the number of independent observations becomes small, leading to a
loss of statistical power. On the other hand, if the aggregation window is
too small (for example, 5 seconds), the data becomes noisier and more sus-
ceptible to outliers and extreme fluctuations, which can distort the analysis.
Therefore, an appropriate balance must be found to maintain both sufficient
sample size and stability of the measured metrics.

An empirical validation will also be provided to assess the performance
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of the methods and to validate the chosen aggregation window.

4.2.1 Type I Error Validation

When applying statistical tests, an implicit assumption is made: the false
positive rate is controlled by the p-value threshold [24]. If this assumption is
violated, the p-value can no longer serve as a valid indicator of False Positive
Rate (FPR). To ensure validity, it is necessary that the p-values follow a
uniform distribution under the null hypothesis. One of the most widely
used methods to verify this assumption is A/A testing, which involves the
following steps:

e On a dataset structurally similar to that of the planned experiment,
randomly split observations into "test" and "control" groups such that
no systematic difference should exist between them.

e Repeatedly sample paired subgroups (e.g., 1,000 iterations), applying
the statistical test to each pair.

e Analyze the resulting distribution of p-values to verify whether it fol-
lows uniform distribution. Additionally, calculate the share of wrong
rejection of the null hypothesis - FPR.

To justify the validity of the proposed test under the outlined criteria, the
A /A test was conducted (see Fig. 11), mirroring the structure of the actual
experimental setup.

For each metric and each aggregation level, the procedure was conducted.
The resulting distributions of p-values were examined and found to be ap-
proximately uniform. An example of a p-value distribution is presented above
in Figure 13.

4.2.2 Minimum detectable effect

Before conducting the tests, it is also important to assess the minimum de-
tectable effect (MDE). However, it should not be used directly; instead, hy-
potheses can be reformulated based on the MDE. Specifically, when a p-value
exceeds the threshold, it is not enough to simply state that there is no effect
or that the evidence was insufficient. Rather, it should be interpreted as:
if an effect exists, it is smaller than the minimum detectable effect at the
chosen power level.

As discussed above, for our metrics we cannot use the raw standard devi-
ation directly (the metrics are ratios/normalized aggregates and may involve
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def check_aa(
data: pd.DataFrame,
nominator: str,
denominator: Optional[str] = None,
percentage_groups: OptionallIterablel(float]] = None,
method: Optionallcallable] = DEFAULT_METHOD,
split_type: Optionallstr] = "random",
split_count: Optionallint] = 2,
effects: Optional[list] = None,
N: int = 1000,
*kkwargs,

) => np.array:
p_values = []

df = data.copy()

if effects is None:
effects = [0 for _ in range(split_count)]

combination = list(combinations([i for i in range(split_count)!, 2))

for _ in tgdm(range(N)):
split_data(df, split_count, split_type, percentage_groups=percentage_groups, skkwargs)

p_values_per_combo = []

for pair in combination:
values_a_nom, values_b_nom = (
df.loc[df["split"] == pair[@], nominator],
df.loc[df["split"] == pair[1], nominator],
)

if denominator:
values_a_den, values_b_den = (
df.loc[df["split"] == pair[0@], denominator],
df.loc[df["split"] == pair[1], denominator],
)

# nogymaTtb Haf CTPYKTypoW KaK 3[eCb pacyuuTbiBaTb 3@PPeKTbl ay4uwe
p_values_per_combo.append(
method (
apply_effect(values_a_nom, effects[pair(@]], denominator=values_a_den),
values_a_den,
apply_effect(values_b_nom, effects[pair(1]], denominator=values_b_den),
values_b_den,
*kkwargs.get('criteria_args", DEFAULT_ARGS),
).pvalue

)

else:
p_values_per_combo.append(
method (
apply_effect(values_a_nom, effects[pair(@]]),
apply_effect(values_b_nom, effects[pair[1]]),
*xkwargs.get("criteria_args", DEFAULT_ARGS),
) .pvalue

)
p_values.append(p_values_per_combo)
return np.array(p_values)

Figure 11: Realization Type I error Validation in Python
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get_metric_stats(x_0: np.array, y_0: Optionallnp.array] = ):

y_0 5
y_0 = np.ones(len(x_0))

mean_nom, var_nom = np.mean(x_0), np.var(x_0)
mean_den, var_den = np.mean(y_0), np.var(y_0)

cov = np.mean((x_0 - mean_nom) * (y_0 - mean_den))

std = np.sqrt(
var_nom / mean_den ** + var_den * mean_nom %% / mean_den %% 4 - * mean_nom / mean_den %% 3 * cov

mean = np.sum(x_0) / np.sum(y_0)

mean, std

Figure 14: Realization of standard deviation through Delta-Method in
Python

dependence). Instead, we approximate the sampling variance via the Delta
Method; for a ratio § = X /Y this yields

R 2 2 2
Var(f) ~ 2% 4+ EX52 - ZEXoou(x)Y),
2 4 3
Hy Hy Hy

which we then use to compute the effective standard deviation and thus
the MDE (e.g., MDE = (21_q/2 + 21-3) 0ei/ /1t for a two-sided test). This
approximation is implemented in Figure 14.

As expected, a smaller aggregation window leads to a lower MDE. On
average, the MDE is approximately 3%, implying that if no statistically
significant difference is observed, any potential effect is likely smaller than
this threshold.

4.3 Analysis of Results

4.3.1 Economic and Operational performance analysis

As illustrated in the figure 16, the hailing platform achieves a consistently
higher rate of completed trips compared to the SAEV model. This outcome
is expected, given that SAEVs must periodically exit service for charging,
reducing their availability.

Yet, when examining the net revenue (see Fig. 17), a different trend
emerges: the net revenue generated by SAEVs increases more steeply with
fleet size than for either traditional taxis or hailing services. This suggests
that SAEVs benefit from stronger economies of scale. As the fleet size grows,
the marginal gain in revenue per additional vehicle is significantly greater for
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SAEVs than for the other two models. This nonlinear scaling effect may be
attributed to their ability to operate without labor costs.

SAEVs have slightly higher utilization than the hailing service (see Fig.
18). The lift heavily depends on fleet size and varies from 1% to 11%. In
contrast, traditional taxis show very low and almost constant utilization re-
gardless of fleet size.

4.3.2 Environmental impact

As expected, emissions from the SAEV fleet are significantly lower than those
from both hailing and traditional services (see Fig. 19). In contrast, hailing
services-largely composed of internal combustion engine vehicles-exhibit the
highest emissions, increasing steeply with fleet size. Traditional taxis fall
in between but also show a steady rise as the fleet expands. These results
highlight the strong environmental benefits of electrified fleets, particularly
at scale.

It is also worth noting that the environmental performance of SAEVs
is closely tied to the energy mix of the electricity grid. In regions with a
high share of renewable energy, the shift from internal combustion engines
to SAEVs can deliver near-zero operational emissions. By contrast, in areas
where coal or natural gas remain dominant in power generation, the envi-
ronmental benefits are reduced, as emissions are effectively transferred from
tailpipes to power plants. Bauer et al. (2021) emphasize that transport elec-
trification policies must therefore be coordinated with broader decarboniza-
tion of the electricity sector [2].
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Another relevant consideration is the potential rebound effect. As the
marginal cost of each trip declines, SAEVs could encourage higher travel de-
mand, partially offsetting emissions reductions. This phenomenon has been
discussed in sustainability transition studies (Silva et al., 2022), which warn
that induced demand may arise if lower costs stimulate additional trips that
would otherwise not have been taken [20]. While the present simulation
holds demand constant, future extensions could explicitly model elasticity of
demand to assess whether increased accessibility leads to higher aggregate
vehicle kilometers traveled.

Finally, beyond operational emissions, the full life-cycle environmental
impact of SAEVs must account for battery production, recycling, and dis-
posal. Although outside the scope of this study, such factors are significant:
manufacturing electric vehicle batteries is resource-intensive, involving ma-
terials such as lithium, cobalt, and nickel. Studies such as Sumitkumar et
al. (2024) highlight that the environmental payback period for electric vehi-
cles depends on both battery life and the carbon intensity of electricity used
during operation [23]. Integrating such life-cycle perspectives would provide
a more holistic assessment of the sustainability of SAEVs.

4.3.3 Hypothesis results

In summary, our analysis shows that the use of SAEVs leads to major im-
provements compared to both hailing and traditional taxi services, especially
in terms of environmental and financial results (see Fig. 20). Across all fleet
sizes, SAEVs consistently outperformed hailing and traditional taxi services
in terms of both environmental and financial outcomes. CO2 emissions were
significantly lower (as illustrated in Fig. 19), and net revenue was substan-
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tially higher, regardless of whether there is a shortage of vehicles or enough
supply. On average, net revenue increased by more than 250%, while CO2
emissions were reduced by over 100% relative to the benchmark services.
Additionally, SAEVs demonstrated a statistically significant improvement in
utilization rate, with the effect reaching 11% at a fleet size of 3,500 vehicles.
However, not all operational metrics improve. The number of completed trips
dropped by about 20% on average. Yet, this gap decreases as more SAEVs
are introduced, and it can be largely closed with a larger fleet size.

In addition to within-fleet-size comparisons, we also conducted a cross-
fleet-size evaluation only with hailing 24-hour services. Even when the fleet
size of the hailing service is up to seven times larger, SAEVs still outperform
in terms of net revenue 21. Specifically, despite this substantial disparity in
fleet scale, SAEVs deliver a revenue lift of approximately 70%. This find-
ing suggests that SAEVs maintain strong economic advantages even under
conditions of supply scarcity, while hailing services require significantly more
vehicles to reach comparable financial outcomes.

Overall, the results suggest that SAEV perform better than hailing and
traditional taxi services in terms of revenue and environmental impact. Nev-
ertheless, there is a trade-off: some decrease in operational efficiency might
occur unless the SAEV fleet is scaled appropriately.
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4.3.4 Statistical Robustness of Results

While the descriptive analysis already indicates clear performance differences
between SAEVs and conventional fleets, it is important to ensure that these
results are not artifacts of sampling variability or model noise. For this
reason, the study incorporated several robustness checks.

First, Type I error validation was conducted to confirm that the false
positive rate of the statistical tests remained close to the nominal significance
level. This involved repeatedly resampling synthetic control and treatment
groups from the same dataset. The resulting distribution of p-values was
approximately uniform, confirming that the hypothesis testing framework is
well calibrated and does not overstate significance. Such checks are critical
in transport simulation contexts, where large datasets can create spurious
statistical confidence if not carefully validated (Deng et al., 2018) [9].

Second, Type II error validation was performed by injecting synthetic
treatment effects into one group and testing whether the statistical procedure
was able to detect them. This approach provides an empirical measure of
test sensitivity. The results showed that effects of the magnitude observed in
the simulation (e.g., revenue increases above 50% or utilization lifts of more
than 5%) were consistently detected at high statistical power. Conversely,
smaller effects below the minimum detectable effect (MDE) threshold were
rarely identified, ensuring that the conclusions reported here focus only on
practically meaningful differences.

Finally, sensitivity tests on aggregation windows demonstrated that sta-
tistical reliability is affected by temporal granularity. At very small aggrega-
tion levels (e.g., five-second windows), noise dominates, while at very large
levels (e.g., weekly averages), the number of independent observations de-
clines. The chosen 3-minute window represented a balanced trade-off be-
tween sample size and variance stability, consistent with best practices in
transportation data analysis (VK Team, 2020) [24].

Together, these robustness checks provide confidence that the observed
performance advantages of SAEVs are not merely statistical artifacts but
reflect systematic differences rooted in fleet design and cost structure.

5 Conclusion

This thesis evaluated the integration of Shared Autonomous Electric Vehicles
(SAEVs) into urban mobility systems using a simulation-based framework.
The analysis compared SAEVs against traditional taxi services and 24-hour
ride-hailing platforms, focusing on operational efficiency, financial outcomes,
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and environmental impact.

The results are clear. SAEVs substantially reduce COy emissions, with
near-complete elimination of operational greenhouse gases relative to combustion-
based fleets. Net revenue was consistently higher, on average more than
250% above benchmark services, even when compared against much larger
ride-hailing fleets. Utilization efficiency also improved, reaching up to 11%
at a fleet size of 3,500 vehicles. These advantages confirm that SAEVs can
outperform conventional mobility services across both environmental and
economic dimensions. At the same time, not all operational outcomes im-
proved: the number of completed trips fell by roughly 20% on average due
to charging downtime. However, this gap narrows as fleet size increases and
can be largely closed with sufficient scaling of the system.

A key contribution of this research is the development of a flexible, open-
source simulation framework. It enables systematic testing of fleet sizes,
charging infrastructure, and demand conditions while ensuring statistical va-
lidity through Type I and Type II error checks. This framework provides
a foundation for robust evaluation of SAEV strategies and can be directly
reused in other urban contexts.

The findings also highlight important implications. For policymakers and
city planners, SAEVs demonstrate strong economies of scale, meaning that
early support for deployment may accelerate the point at which the technol-
ogy becomes both environmentally and financially sustainable. For operators,
results suggest that maximizing the benefits of SAEVs requires not only fleet
expansion but also careful management of charging infrastructure to avoid
service shortages.

Beyond their theoretical and methodological contribution, the results of
this thesis have direct practical relevance. Policymakers can use these find-
ings to design regulatory frameworks that prioritize investment in charging
infrastructure and provide targeted incentives for early SAEV deployment.
For operators, the framework illustrates how revenue potential can be max-
imized through optimized fleet sizing and proactive repositioning strategies,
while also warning of potential service gaps if charging constraints are ig-
nored. Finally, for researchers and technology developers, the open-source
simulation tool offers a transparent environment in which new dispatching
algorithms, battery technologies, or pricing strategies can be tested under
realistic demand conditions.

In conclusion, the evidence shows that SAEVs offer substantial bene-
fits compared to both taxis and ride-hailing services: higher revenues, lower
emissions, and better utilization, balanced against manageable operational
trade-offs. By making the framework publicly available, this thesis aims to
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support further academic inquiry and provide a practical tool for decision-
makers in shaping the next generation of urban mobility.

6 Limitations and Future Work

Although the simulation provides valuable insights into the relative perfor-
mance of SAEVs and conventional fleets, several limitations must be acknowl-
edged.

6.1 Methodological Reflection

The methodological design of this study relied on a discrete-time simulation
of Shared Autonomous Electric Vehicle (SAEV) operations. While this ap-
proach was chosen for reasons of transparency, computational efficiency, and
data compatibility, it is important to critically reflect on the assumptions
embedded in this choice and its implications for interpretation.

A key decision was to model the system in discrete one-minute intervals
rather than in continuous time. This choice enabled straightforward inte-
gration with trip data, which is timestamped at minute-level granularity. It
also simplified event scheduling, since arrivals, assignments, and charging
completions could all be aligned with a common clock. However, this ab-
straction implies that sub-minute dynamics, such as dispatching delays or
traffic-light interruptions, are not represented. In contexts where second-
level precision matters, such as highly congested intersections-continuous-
time or event-driven simulations might yield more accurate results, though
at a higher computational cost.

The simulation is agent-based at the level of individual vehicles and trips,
but aggregate in its treatment of travel times between zones. This hybrid
choice balanced computational feasibility with behavioral richness. An al-
ternative would have been a fully agent-based traffic microsimulation, where
every vehicle movement is modeled in continuous space. While such models
provide fine-grained insights into congestion patterns, they require immense
data inputs and calibration, often exceeding the scope of thesis-level research.
The present approach thus represents a pragmatic trade-off: capturing indi-
vidual decision processes while abstracting from detailed traffic flows.

Vehicle assignment relied on a greedy matching algorithm, which mini-
mizes pickup times within each discrete step. This method was selected for
its simplicity and robustness, ensuring that all feasible matches are resolved
quickly. Yet the algorithm is suboptimal compared to advanced approaches
such as mixed-integer programming, reinforcement learning, or predictive
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demand models. Literature on ride-hailing platforms shows that anticipa-
tory repositioning can significantly improve efficiency (Vazifeh et al., 2018)
[26]. By not including such strategies, this simulation may underestimate
the potential of SAEVs under sophisticated dispatching.

The study relies on New York City’s TLC datasets, which are among the
most comprehensive mobility records available globally. Their scale, detail,
and public accessibility make them uniquely suited to simulation studies.
However, the reliance on a single metropolitan area raises questions of ex-
ternal validity. Urban form, energy infrastructure, and cultural attitudes
toward automation differ substantially across cities. While NYC offers an
extreme case of high-density demand, the conclusions may not transfer di-
rectly to mid-sized or car-dependent cities. Future research could replicate
the methodology with datasets from other contexts to explore robustness.

Battery dynamics were modeled using constant consumption rates and
linear charging functions. This reflects average-case behavior but omits non-
linear charging curves, battery degradation, and variability in driving condi-
tions. Similarly, charging station capacity was modeled as a fixed-slot queue,
abstracting from grid-level constraints. While these simplifications enable
tractable simulation, they may understate real-world bottlenecks, especially
under rapid fleet scaling. A more detailed energy model would require cou-
pling transport simulations with power-system models, as explored in Bauer
et al. (2021) |2].

Overall, the methodological choices reflect a balance between realism,
transparency, and feasibility. More complex models could capture additional
dynamics but risk obscuring causal relationships behind layers of assump-
tions. The advantage of the present framework is that its mechanics remain
interpretable and reproducible, aligning with the principles of open science.
At the same time, this comes at the cost of certain simplifications that must
be acknowledged when interpreting results.

6.2 Behavioral Assumptions

The analysis assumes identical user demand behavior across service types.
In practice, SAEVs may face different demand elasticities due to passenger
concerns about safety, comfort, or trust in automation. These behavioral
responses could affect adoption rates, waiting-time tolerance, and willingness
to share rides. Modeling such heterogeneity requires integrating demand
elasticity functions and survey-based behavioral models into the simulation
framework.
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6.3 Market Competition

The current simulation evaluates a single operator in isolation. In real-world
conditions, passengers may choose between multiple platforms (e.g., Uber,
Lyft, taxis), creating competition for demand and altering pricing dynamics.
Market fragmentation can lower utilization rates and lead to uneven spatial
coverage. Future work should include multi-agent simulations where several
competing operators interact, possibly under regulatory oversight.

6.4 Infrastructure Simplifications

This study focused primarily on fleet size while holding other system param-
eters constant. Charging stations were randomly distributed and assumed to
provide homogeneous service capacity. In reality, charging infrastructure is
unevenly distributed across cities, and congestion at stations can create bot-
tlenecks. Future research could explore optimization of station placement,
the impact of fast-charging technology, and integration with vehicle-to-grid
(V2G) services.

6.5 Data Limitations

The TLC trip datasets provide extensive coverage of completed rides but do
not capture requests that were rejected or abandoned. This limits the ability
to model latent demand and true service quality. Moreover, data quality
issues such as missing fields, implausible fares, and inconsistent shared-ride
flags may introduce noise. Extending the framework with synthetic demand
models or calibrated demand curves could improve robustness.

6.6 Environmental and Technical Factors

The environmental analysis only accounts for operational COs emissions
during vehicle use. It does not include upstream emissions from electric-
ity generation, battery manufacturing, or end-of-life recycling. Additionally,
the simulation does not consider battery degradation, which affects range
and lifecycle costs. Future work should adopt life-cycle assessment (LCA)
methods and incorporate degradation dynamics to better estimate long-term
environmental impacts.

6.7 Governance, Ethics, and Societal Implications

The deployment of SAEVs cannot be evaluated solely from a technological or
economic perspective. Ethical, governance, and societal dimensions play an
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equally important role in determining whether such systems can be adopted
successfully and sustainably.

From an ethical and governance standpoint, several challenges arise. The
large-scale use of SAEVs depends on extensive collection of geolocation and
behavioral data, raising significant privacy concerns. Ensuring secure data
handling and maintaining user trust will be critical. Algorithmic dispatch-
ing may also lead to fairness issues: if platforms optimize exclusively for
efficiency, some neighborhoods may experience systematically lower avail-
ability, exacerbating spatial inequalities. Furthermore, SAEVs disrupt es-
tablished labor structures by removing driver compensation, thereby gener-
ating economic efficiency gains while simultaneously displacing traditional
driving jobs. Broader questions of liability and accountability also remain
unresolved, especially regarding responsibility in cases of accidents or service
failures.

At the same time, the empirical results of this thesis highlight clear op-
portunities for policy action. Demonstrated economies of scale suggest that
early public support through subsidies, pilot projects, or favorable regula-
tion could accelerate SAEV deployment until operations become financially
self-sustaining. Near complete elimination of CO45 emissions underscores the
relevance of SAEVs for urban climate policy, making investments in charging
infrastructure not an optional add-on but a central prerequisite for system
reliability. Finally, the social consequences of job displacement call for an-
ticipatory measures such as re-skilling programs and the creation of new
employment opportunities in fleet maintenance, charging management, and
system supervision.

Beyond direct policy measures, SAEVs also entail broader societal impli-
cations. The removal of human drivers not only reshapes the labor market
but also changes the social fabric of urban mobility. Adoption will depend on
whether passengers feel safe, perceive the technology as reliable, and view the
service as accessible across different neighborhoods. Public trust will there-
fore require transparent communication about safety, clear liability frame-
works, and inclusive service coverage.

In the long term, SAEVs should be understood not merely as a transport
innovation but as part of a larger transition toward sustainable, technology-
driven urban living. Their success will hinge on the integration of transport
planning with climate goals, digital governance, and equity considerations.
This highlights that SAEV deployment is not just a technical intervention but
a catalyst for systemic change in how cities are organized and experienced.

Taken together, these considerations illustrate that SAEVs represent both
an opportunity and a responsibility: technological gains are achievable, but
long-term success will depend on how effectively ethical risks are mitigated,
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governance frameworks are established, and supportive public policies are
implemented in ways that align efficiency with equity and sustainability.

6.8 Future Research Directions

While this thesis has provided empirical insights into the performance of
Shared Autonomous Electric Vehicles (SAEVs) under different fleet sizes and
infrastructure constraints, several avenues remain open for further investiga-
tion. Extending the simulation framework and empirical scope would allow
for a deeper understanding of the systemic role SAEVs can play in future
urban mobility.

One promising direction is to study SAEVs not as a stand-alone system,
but as part of a multimodal ecosystem. In many metropolitan areas, ride-
hailing demand is highly correlated with public transport usage, particularly
for first- and last-mile connections. Integrating SAEVs with metro, bus, and
commuter rail systems could therefore yield different results than those ob-
served in a purely competitive setting. Future research could incorporate
intermodal transfers and evaluate whether SAEVs complement or cannibal-
ize existing public transport services. This line of inquiry would also have
important implications for urban planning and transport equity, especially
in areas where access to high-frequency public transport is limited.

Another avenue relates to the interaction between SAEVs and the broader
energy system. This thesis measured environmental impact in terms of oper-
ational COy emissions, but did not model the dynamic interaction between
fleets and electricity grids. Future work could integrate SAEV charging with
smart-grid management, accounting for renewable energy availability and
time-of-use electricity pricing. Advanced scenarios such as Vehicle-to-Grid
(V2G) could be tested, where SAEV fleets not only consume but also tem-
porarily supply energy back to the grid during peak demand. Such an exten-
sion would connect the debate on sustainable mobility with that on energy
transition and climate resilience.

Service equity also deserves closer examination. In practice, mobility
platforms tend to concentrate supply in high-demand, high-income districts,
which can exacerbate spatial inequality. Future SAEV simulations could
explicitly model service provision across different neighborhoods and evaluate
how dispatch algorithms, fleet sizes, or pricing policies affect underserved
communities. This perspective links technological optimization with ethical
and governance considerations and is especially important if SAEVs are to
be integrated into publicly regulated mobility frameworks.

Finally, while this study focused on New York City, replication across
different urban contexts would add external validity. European cities, for
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example, feature denser public transport networks, narrower streets, and
stricter regulatory environments. Smaller or less dense urban areas may
exhibit different adoption patterns, infrastructure bottlenecks, or cost struc-
tures. Extending the framework to multiple cities would allow researchers to
disentangle context-specific outcomes from generalizable trends, and thereby
improve both scientific understanding and policy relevance.

In summary, future research should not only refine technical assumptions
within the simulation framework, but also broaden the analytical perspec-
tive to include multimodal integration, energy-mobility interactions, equity
concerns, and comparative studies across diverse urban environments. Ad-
dressing these dimensions would provide a more comprehensive picture of the
opportunities and challenges associated with SAEV deployment, and support
the development of evidence-based policies for sustainable and inclusive mo-
bility.

Appendix

The simulation framework developed in this thesis, including code and con-
figuration scripts, is openly available on GitHub for further inspection and
replication of results:

https://github.com/enbelodedova/simulation nyc

The framework is designed to be modular and extensible, allowing re-
searchers and practitioners to vary parameters such as fleet size, charging in-
frastructure, and vehicle battery capacity. It can therefore be directly reused
for testing alternative deployment strategies in different urban contexts.

The empirical analysis in this study relies on publicly available data from
the New York City Taxi & Limousine Commission (TLC), covering more
than one billion trips across for-hire vehicle platforms such as Uber, Lyft,
Via, and Juno. The raw data are accessible at:

https://www.nyc.gov/site/tlc/about/tle-trip-record-data.page

Simulation Parameters

For reproducibility, the key parameters used in the simulation framework are
summarized in Table 3. These values reflect both the technical assumptions
(e.g., charging times and consumption rates) and the operational constraints
imposed in the experiments.
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Parameter Value / Range

Fleet size 500 - 3,500 vehicles

Battery capacity 300 km range

Charging time 3,600 seconds (1 hour)
Electricity consumption 1 unit per km

Charging stations 10 (capacity: 5 vehicles each)
Maximum wait time 900 seconds

CO; emission factor (ICE taxis) 0.2 kg/km

Simulation time step 1 minute

Table 3: Main parameters used in the SAEV simulation framework.
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