Building an Web-Based Open Source Tool to
Enhance Project Management, Monitoring and Collaboration
in Scientific Projects

Alexander Schatten®, A Min Tjod,

Amin Andjomshoa’®, M. Hassan Shafazand”

Ynstitute of Software Technology and Interactive Systems
Technical University of Vienna
{ schatten,tjoa} @ifs.tuwien.ac.at
2University of Kerman, Kerman, Iran

Abstract

Scientific Cooperation, especially when co-workers and teams are dislocated, requires support for
project management to distribute information to all members of the team. Such a support should
allow project monitoring for team leaders and the management of resources, communication and
documentation.

In early 2000 the Austrian Federal Ministry of Education, Research and Culture launched a project
for the management and support work of bilateral scientific projects between Austria and partner
countries. This paper will describe the architecture and results of this project.

The Institute for Software Technology develops an open source web application software; to
enhance these co-operative tasks. The,, Scientific Workplace” -tool allows management of users and
skills, projects, tasks, to-do lists, resources (e.g. documents) and access control, project monitoring
and messaging.

The software will be distributed as open source application and is built itself upon open source
server tools (application server, database, web-server) and uses open communication protocols
(SOAP) and XML file-formats. The server application as well as the administration application and
the user front-end are implemented in a platform independent way. This way of realisation
increases the flexibility of use as well as the spread of the application as there are no hurdles in
terms of license fees or option to make modifications/adaptations.

1. The SWP Project

The Scientific Workplace Project (SWP) was initiated by the Austrian Federal Ministry of
Education, Science and Culture to perform a web-based management tool which is suitable for
scientific collaboration in projects which are performed in different locations. Especially SWP
should be used for joint projects with scientific teams of other countries. The SWP project is
performed jointly between the Institute of Software Technology and Interactive Systems at the
Austrian Side and the Computer Science Department of the Kerman University at the Iranian Side,
which is represented by TCO (Technology Co-operation Office of the Iranian Presidency). The
project starts in early 2000 and a very promising prototype has been finished by July 2001. Theam
of this paper is to describe the very successful joint work between the Iranian software engineers

headed by Prof. Shafazand from Kerman University and the Austrian team. Within the Austrian
team most of the design and implementation work has been performed by Alexander Schatten. In
Iran most of the design and implementation work has been performed by Amin Andjomshoa. All
the design and platform decisions have been taken jointly by both teams. We plan to continue the
project for another two years with the goal of having a public-tool available for joint distributed
scientific work with features yet not commercially available.

2. Collaboration

2.1. Didocated Workgroups

Projects with workers in dislocated workgroups are a specific target for SWP. Already in
"conventional" projects, communication and exchange of information is a crucial factor for success;
In the case of dislocated workgroups the complexity of this problem is obviously increasing.

Many of the collaborative tasks can be co-ordinated using email and telephone, but if more than two
or three workers are involved, a more organised and centralized information store shows to be
useful. The SWP platform helps the project members in organizing project members (user
management, information), communication (discussion groups, news system, chat, messaging
support) and project management (project data, tasks, to-do lists, resource management).

2.2. Project Management

2.2.1. Introduction

The support for project management and monitoring is an essential part of the SWP system. As
shown in Fig. 2 and explained in the Example section, projects can be defined in the SWP context.
First of all, each project can contain ,,general” project information like project name, start date, end
date, description and the like.

More important is the feature to build a,,work tree* by defining tasks and subtasks for each project.
These tasks are the centre of the project management. Each task has assigned a user who is
responsible for this task. He also defines the progress settings of his work.

2.2.2. Project Monitoring

For project monitoring, the system offers visualisation functionality that displays the progress of a
complete project or of several main tasks be combining the progress information, start, end date and
other attributes of the sub tasks. This helps the project manager to keep track of the work of higher
specific project and the ,,top-manager” to keep track of all projects running in his’her company or
institute.

2.2.3. Support for Collaboration

Several collaboration features can be assigned to each task: Users can define and manage ,, to-do*
lists and keep an overview over the work of the task. Arbitrary resources can be uploaded to the
system and assigned to specific tasks. This helps to organise project documentation in a natural way
(as assigning them to the tasks they belong too).

All members of a project have read access to the resources of a project, hence this feature enhances
collaboration as besides the project management functionality an organised resource library is
provided.

2.3. User Management
Of course a user management module is implemented in the SWP system. Administrators may add

new user accounts; project manager can add those usersto their projects as project members.

Besides the account information, specific user data is acquired like contact information, skills,
etc.This helps (as described below) to increase the communication facilities when co-working on
projects.

2.4. Communication Facilities

2.4.1. Introduction

Communication is another important factor in collaboration, especially when the teams are
dislocated. We support three types of communication at the current release:

2.4.2. Discussion / News

A discussion/news mechanism is implemented, that allows to discuss certain topics considering a
specific project or the complete SWP working context (e.g. the complete institute) or to allow
project managers to post regular , newsletters* to the project team about essential developmentsin
the project. These messages are stored on the server. A user can post messages to all SWP user or to
a specific project.

2.4.3. Messaging

At the current version we tend to think that users prefer to use the email clients they are used to.
Hence we do not implement some kind of email client, though thisis an option for future rel eases.

Nevertheless: In the SWP system data of all users are available for all SWP members, naturally we
support sending of emails via web-front-end. A user may send group mails to all SWP members, to
specific users and to members of a project or to a combination of them. This leverages sending

»group” messages.
2.4.4. Chat

A simple chat module is implemented in the first version, which could enhance specific work and
discussions in some projects.

338} PIL-IINBS -G

p@u0) sauslEsed SWATY

aseqa|
F
Luoepues sqoa yhuosener
b
- /
| IeARSIBNIBIPIR]
L
F
[BAIBS UCIENSILILIPY dMS eI P dMS
pauo]) eipfuyuy L duy
saod
q1eD 2dd
TNX/AVOS
PIARS JdH dV0S AR ddyeipiyug uoneslddy-tRAL dMS
PAIISYIMN d NP
m_mﬁ Jdi »beuey
THX/dYOS a3nossy
MBI UONRNSIUIIPY dMS wp)shsa|l4

pee) aRsISRd X

_ RN |

_ epq1oeloig _

Figure 1 Technical Overview about the SWP Infrastructure

3. Technical Overview

31 Overview
An overview of the SWP infrastructure isgivenin Fig. 1.

3.2. Persistence

3.2.1. RDBMS

The data of the SWP system is stored in a RDBM system with the exception of the resources (files)
uploaded to the system. As the access to the database system is done using an object relational
mapping tool, the underlying database system is not limited to a specific system. Currently we use
the open source version of Interbase [7, 8], as a high performance RDBMS with all necessary
functionality running on Linux as well as on Windows and Solaris.

3.2.2. DODS

Data Object Design Studio (DODYS) is part of the Enhydra application [7] server and is an object-
relational mapping tool. Using DODS allows to design the persistence (database) layer in a database
neutral way and simplifies (Java) access to the RDBMS. DODS can generate database metadata for
different database systems like Interbase, PostgreSQL, Oracle and so on. The combination of
DODS and the XML mapping system allows easily to adapt a running system to another database
system by making a backup to XML, changing the database and restoring the XML data to the new
database system.

3.2.3. XML

Mapping tools exists that allow import and export of the complete SWP data (stored in RDBMS) to
XML [3, 4]. This has the advantage, which this kind of persistence is platform and database neutral
and can be used to backup and restore data or exchange of data between different (SWP) systems,
for example using the SOAP webservice interface.

3.2.4. Filesystem

All "core" information are stored in the RDBM system as mentioned above. The SWP system
allows aso storage of resources (file upload) to assign documentation and other stuff to certain
tasks. These files are stored in the server file-system, not in the database management system.

Only references are stored in the RDBMS. At the first glance it could seem more "natural” and
consistent to store this binary data in the RDBMS too. We decided to store this kind of data in the
file system, as it could have serious impact in performance when using the RDBMS for storage.
Moreover this datais used "asis' and the database system offers no additional functionality, which
means, that the access to these files would become more difficult than necessary. Furthermore this
approach seems to be more flexible as for storage of binary data (files) multiple hard-disc can be
defined and the database files stay more compact and easier to handle.

3.3. Web-Application

The "norma" interface of the SWP system is a web-browser using HTML and Javascript
functionality. The Enhydra open source application server [7] is used to generate this user interface
for interaction with the system. This approach allows flexible access to the SWP system as there is
no need to install specific client applications. A SWP user can access hisher data from al client
computers that have an internet connection and a web-browser. The interface is functional but light-
weight and therefore offers the functionality also to clients which have a low-bandwidth access e.g.
using modems.

3.4. Administration

3.4.1. Application Server

The administration of the application server is done using the Enhydra application server interface.
This is "low-level” administration and is usually only necessary when installing the system or
shutting down (parts) of the system.

In the Enhydra context the web-application, the SOAP service [11] and the INLP [9, 10] webserver
to provide the SWP administration interface is running. These systems can be configured
individually and can also be stopped selectively. For example: for "high security application” the
administration access could be stopped at a "low level" by disabling the SOAP service in the
application server.

But the system is again more flexible: Enyhdra is needed to serve the Web-Interface for SWP. All
other services could be installed in arbitrary other Webserver/Servlet containers, even on different
server systems. This could increase the security and performance of a complete SWP system.

3.4.2. Database Server

The SWP data is administrated using the SWP-Administration application. Obviously all RDBM
systems have their own administration applications to make low level modifications like tuning set-
up. Usually this is only required when creating the database on installing the SWP system and
eventually to make performance tuning steps.

Also the backup mechanisms of the RBDMS systems can be used (consider a Oracle or DB2
installation in a company or institute, that serves different databases and one of these databases is
the SWP database. Then a backup mechanism may be installed already, and using this mechanism
may seem natural.)

3.4.3. Web-Application-Administration

A high-level administration tool to administrate the SWP functionality is available as Java (JNLP)
application [9, 10]. We decided to write a Java application - as a richer interface for administration
is desired - and administrative tasks will not have to be necessarily available "everywhere". This
application is served by Java Webstart that is a mechanism that automatically distributes the
application to the admin clients and guarantees that always the most recent version of the
application and the libraries are used for administrative functions.

3.4.4. Web-Service Interface

We implement the open standard SOAP (supported by all mgjor software companies) [11], which is
anetwork protocol based on XML that supports remote procedure calls via http.

The consequence is, that we offer basic functionality to exchange data with the SWP system using
the Apache SOAP implementation. This can be used to ,plug-in“ several client applications
speaking the SOAP protocol to exchange data.

The admin client connects and communicates with the server system using the open SOAP protocol
(see Webservice Interface) and can add additional functionality like other clients for users, backup
mechanism, batch jobs, and so on.

Currently we use the SOAP interface to connect the administration client to the SWP server.

3.4.5. Logging

A logging mechanism is implemented to store certain user actions like logging in, logging out,
trying to log in with wrong passwords, starting backup and so on. The logging data is stored in the
database and can be queried by the administrator.

4. Public Services

4.1. Introduction

Parts of the information stored in the SWP system can be used for a "public view": Usualy
companies or academic institutes provide contact and project information on the website. This can
be done automatically using the SWP system.

Part of the user information and attributes like names, description and members of the current
projects can be published as a public view. This helps keeping these information up to date as a
modification of email addresses, telephone numbers or workgroup members are "synchronised"
with the internal SWP system.

The Project View shows the data of all SWP projects, but only at a high level: e.g. project name,
start/end, user assigned to project...

The person overview shows all active persons of the SWP context with contact information and
projects the user is assigned to.

If alogged in user accesses these information pages, he has access also to ,internal® information
like telephone numbers, address information, etc.

5. Example

In the example in Fig. 2, an SWP server instance is shown. The example is kept simple enough to
prevent loosing the overview, but nevertheless it is complex enough to show the SWP access
functionality.

This server could be located in Austria.

Three projects and eight users (4 in Iran, 4 in Austria) are defined in the SWP context. Two users
(Iran-User 1 and Austria-User 2) are declared as system administrators. Hence they can
administrate the system: add/remove user, add/remove projects, control the backup system and so
on. These administrative tasks are performed using the administration application via SOAP

interface. (Being administrator does not mean necessarily to have access to al projects using the
"normal” web-interface.)

Project 1 has two main tasks, Task 1 consists moreover of two subtasks. As a next step we will
takeacloser look at the user / project relations:

Iran-User 1 (IU1) is manager of Project 1: This has the consequence, that he is responsible for the
project. A project has exactly one manager (or none, as Project 3, which is declared, but obviously
has not started yet). IU1 obviously has access to all project 1 data (including tasks and subtasks),
but has in this example no access to data of the other two projects.

IU2 is manager of Task 1, hence responsible for Task 1 and subtasks 1 and 2 (!). He can declare the
task as being finished, but this has to be confirmed by the project manager IU1. Furthermore he has
(as user of project 1) read-access to the complete project 1 and write access to Task 1 and subtasks.
U3 is member (worker) at subtask 2; also Austrian User 1 (AU1) is declared as worker on subtask
2. He has read access to complete project 1 and write access only to subtask 2. Each task or subtask
can have more than one user assigned.

Subtask 1 has no assigned users at the moment, so it has not been started yet. Probably other users
currently working on other tasks will take this tasks after having finished the other work. To finish
Project 1, all subtasks and tasks have to be finished, the task managers have to declare them
finished and the project manager has to confirm this.

Now let ustake take alook at the Austrian user group:

AU1 (as mentioned already) is assigned to Subtask 2 of the Project 1, which is managed by an
Iranian manager. He may write to subtask 2 (modify to-do list, add resources, write messages ...)
and read data of project 1. AUL is also assigned as user to project 2, but not as administrator for
project 2. So he will be able to read all data of project two, but has no write access to any part
unless he will be assigned to some task (no tasks are defined currently).

AU3 is declared in the SWP context, but not assigned to any project. The meaning is: AU3 could be
member of the institute but is not working on any current project. He consequently has neither read
nor write access to one of the three projects, but may send messages to other SWP user. As soon as
auser is entered to the SWP context, he is available as worker for projects and tasks.

So project 1 is a collaboration project managed by an Iranian worker; work is done by Iranian and
Austrian workers.

Project 3 isdefined in SWP, but has neither a manager nor users assigned at the moment.

What is left is the "top-manager” view. Both partners have declared a "general manager", which
could be the head of the institute. These managers are declared for the SWP context and have read
access to al projects and additional functionality for project monitoring of many projects (GUI
support to visualise progress of projects).

All mentioned access control rights concern the access to specific task/ resources. Off course al
members of a project may post news for the project use the messaging or the chat system for
collaboration.

All users in the SWP project work with the system using a web-interface with login function to
control the user access. Furthermore there is a public view (via Internet) without login. This public
view can be used to show parts of the user and project (meta)information to the "outside" world.
This is useful to provide contact information and information about running projects on the
institutes/’companies. Thisfeature is optional.

User Iran User Austria

Administraion

v

Usar1 sar 2

> SWP Server nstance

— Project 1 Project2 Project3
| L
» Task 1 { Tagk 2 b g %
i e Task 2 AN
T & r// ... i %
.......... - R L
“‘ —Members
SubTasgk 1 SubTask2 '\\ —To Do List 'J,-’
A —Ressources Vi
\\‘ ——Progress
User lran
Manager
User 1 User Austria
hlanager Usar 2
UseEa {lger 1
| lger 2
hanager Usar3
hanager

Figure 2 Example SWP Project with Users

6. Open System

6.1. Open Source

6.1.1. Introduction

After an extensive period evaluating different server systems and tools, we decided to build our
system on open source tools by many reasons:

For all parts of the project professional open source systems could be found

We believe in the impact of open source software; As SWP itself will be "distributed" as an
open source system (at least the main system) it would be problematic for potential
(academic) user groups to build the system on top of commercia frameworks-as the SWP
system itself would be available with no license feeslf the underlying application server,
database and other important components are commercial systems this would limit the
distribution of our system. Especially as application servers and database systems tend to be
extremely expensive.

Building the complete system as open source tool also encourages potential users to adapt or
extend this system to individual needs and eventually receive additional developments from
other groups to be implemented into the "main" SWP distribution.

Many users (in companies or in the public sector) are aware of security and transparency of
such an infrastructural system. Providing the system including all sources allows these users
to evaluate the crucial parts of the system and check al functionalities if they fit into their
company policy or eventually modify or extend the system to fit their needs.

Since different other infrastructures may be available (containing data that may be useful aso
inside the system) keeping SWP open in many directions (web-service interface) also allows
us to integrate legacy systems and to easily develop modules connecting to the web-service
interface to let available systems communicate with SWP server.

6.1.2. Application Server

We decided to build SWP on top of the Enhydra application server [7]. Thisis a Java-Open source
application server supporting three-tier web applications, namely presentation layer (with xmlc),
business layer (Java components) and persistence layer (object relational mapping - DODS).

6.1.3. Distribution of SWP

As the SWP system is build upon open source tools and will be distributed itself under an open
source license, probably GPL [13], but thisis yet under discussion. However, there will be no need
for license fees for potential users, compared with commercia products.

6.1.4. PersistencelRDBM S

Using the object-relational mapping tool DODS (Enhydra app server) we are not limited to a
specific database system. For our SWP distribution we currently use the Interbase RDBM system.
Using other (eventually available) RDBMS like Oracle or DB2 is possible.

6.1.5. Persistence/ XML

Parallel to the storage in an RDBMS all data can be mapped to XML. Thisis useful asit allows a
platform and system independent backup/restore or archive mechanism and leverages exchange
mechanism between systems (multiple SWP systems or exchange between an SWP and arbitrary
other systems).

6.1.6. Transparency

This open source strategy can be important for user as it guarantees
Extensibility: Users can extend the system where they see the need to.
Adaptability: User can adapt the system to existing infrastructure (databases, ...)
Security: Security aware user can examine the SWP sources and analyse all functions that
could be possible security hazards.
6.2. Open Protocol

It is an important task to keep SWP open in many ways; not only considering open source, but al'so
communication facilities. We decided to provide a SOAP web-service interface using Apache
SOAP [11]. Through this interface all relevant data can be retrieved or stored in the SWP system.
Currently we also provide one client application used for system administration.

10

Basically arbitrary other clients can be written that connect to this open interface. E.g. applications
to integrate SWP in existing infrastructure (import/export data) or write aternative client
applications to access the SWP data and functionality.

6.2.1. Web Service Architecture

The Web-service architecture was already explained in detail in the technical section, however it is
used, or can be used in future applications:

Administration Interface uses SOAP service
Extensions can be written by other users (batch mechanism, integration of other systems)

Synchronisation of different SWP server could be done

6.2.2. Xhtml —Webapp
The data produced by XML C (Enhydra) that generates the web-user interface is xhtml.

6.2.3. Backup/Restore

Backup and Restore can be done using the usual database backup mechanism and additionally in a
platform independent way using the XML import and export functionality of SWP.

6.2.4. Modelling / Documentation

Also the documentation is provided in standard formats: UML (Use cases) and RUP (Rational
Unified Process) [15, 16] is adapted to provide high-level documentation for users who want to
extend or adapt the system or add additional functionality.

Currently the use of O'Reilly Docbook [14] and XML/XSL [5, 6] is evaluated to be used for project
documentation and probably also for automatically generated reports done by SWP system.

7. References

[1] Bray, Tim and Sperberg-McQueen, C.M. (1996), Initiad XML draft,
http://www.w3.0rg/TR/WD-xml-961114.html

[2] Harold, Elliotte Rusty (1999), XML Bible, IDG Books
[3] Bob DuCharme (1998), XML: The Annotated Specification, Prentice Hall PTR

[4] Sharon Adler, Extensible Stylesheet Language Xdl : Version 1.0 - W3C Working Draft 27
March 2000, iUniverse.com

[5] James Clark, XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November
1999, http://www.w3.org/TR/xslt

[6] Enhydra Application Server: http://www.enhydra.org

[7] Timothy Dyck (2000), ZDNet eWeek, Interbase proves it's mettle,
http://www.zdnet.com/eweek/stories/general/0,11011,2436153,00.html

[8] Interbase: http://www.borland.com/interbase, http://firebird.sourceforge.net
[9] Mauro Marinilli, Deploying Java Applications using JNLP and Web Start, Sams (in Print)

11

[10] INLP Sun: http://java.sun.com/products/javawebstart/
[11] Apache SOAP: http://xml.apache.org/soap/index.html

[12] Wrox Multi Team et.a. (2000), Professional Java Server Programming J2EE Edition, Wrox
Pressinc

[13] GPL, http://www.gnu.org/copyleft/gpl.html

[14] Norman Walsh & Leonard Muellner (1999), DocBook: The Definitive Guide, 1st Edition,
O'Reilly

[15] Geri Schneider, Jason P. Winters (1998), Applying Use Cases, Addison-Wesley

[16] James Rumbaugh, Ivar Jacobson, Grady Booch (1998), The Unified Modelling Language
Reference Manual, Addison-Wesley

12

	Abstract
	The SWP Project
	Collaboration
	Dislocated Workgroups
	Project Management
	User Management
	Communication Facilities

	Technical Overview
	Overview
	Persistence
	Web-Application
	Administration

	Public Services
	Example
	Open System
	Open Source
	Open Protocol

	References

