
192

The DBpedia Wayback Machine
∗

Javier D. Fernández
Vienna University of

Economics and Business,
Vienna, Austria

javier.fernandez@wu.ac.at

Patrik Schneider
Vienna University of

Economics and Business,
Vienna, Austria

patrik.schneider@wu.ac.at

Jürgen Umbrich
Vienna University of

Economics and Business,
Vienna, Austria

juergen.umbrich@wu.ac.at

ABSTRACT

DBpedia is one of the biggest and most important focal point
of the Linked Open Data movement. However, in spite of its
multiple services, it lacks a wayback mechanism to retrieve
historical versions of resources at a given timestamp in the
past, thus preventing systems to work on the full history
of RDF documents. In this paper, we present a framework
that serves this mechanism and is publicly offered through
a Web UI and a RESTful API, following the Linked Open
Data principles.

1. INTRODUCTION
DBpedia is one of the biggest cross-domain datasets in

RDF [3] and, not surprisingly, it can be considered as the nu-
cleus for the Linked Open Data cloud [1]. It conforms to the
vision of a big semantic dataset, on which a plethora of third-
party semantic applications are based. Most third-party
tools on top of DBpedia use the official data dumps (and its
associated SPARQL endpoint), which are released at least
once a year1. For applications requiring a live state reflect-
ing the latests Wikipedia changes, DBpedia Live2 monitors
these modifications and converts the Wikipedia articles to
RDF statements in real-time and continuously synchronises
the DBpedia Live endpoint.

However, the current ecosystem does not offer a “way-
back”mechanism, allowing applications to retrieve the RDF
version of a Wikipedia article for a certain time in the past.
Similar scenarios have been already envisioned for Web ar-
chiving, i.e. maintaining snapshots of the Web at different
times. For instance, the non-profit project called the In-

ternet Archive Wayback Machine3 periodically crawls the

∗Supported by the Austrian Science Fund (FWF): M1720-
G11, and the Vienna Science and Technology Fund
(WWTF) project ICT12-15
1http://wiki.dbpedia.org/services-resources/datasets/
change-log
2http://live.dbpedia.org/
3https://archive.org/web/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEMANTiCS ’15, September 15 - 17, 2015, Vienna, Austria

c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3462-4/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2814864.2814889

Web and provides these time-preserved website snapshots
for open use. The wayback mechanism offers access to the
history of a document and enables several new use cases and
supports different research areas. For instance, one can ex-
tract historical data and capture the “Zeitgeist” of a culture,
or use the data to study evolutionary patterns. Previous
works on providing time-travel mechanism in DBpedia, such
as [6], focus on archiving different snapshots of the dumps
and serve these by means of the memento protocol (RFC
7089)4, an HTTP content negotiation to navigate trough
available snapshots. Although thisa perfectly merges the ex-
isting time-travel solution for WWW and DBpedia dumps,
it is certainly restricted to pre-fetched versions than must
be archived beforehand. In turn, storing all versions of DB-
pedia resources would face traditional scalability problems
when archiving dynamic Linked Open Data at Web scale [4].

In this paper we aim at providing the wayback functional-
ity for DBpedia at any selected time based on the revisions
of their Wikipedia article, thus allowing Linked Open Data
users and third-party systems to work on the full history
of resources. To do so, for a given resource and time, we
inspect the change history of Wikipedia pages, get the ap-
propriate page version/s and apply the DBpedia Knowledge

Extraction Framework [1] to convert the Wikipedia version
to the DBpedia version in RDF. In addition, we provide the
metadata of the retrieved revisions as RDF, so that auto-
matic clients can work on top of our infrastructure. At first
sight, it appears to be a simple task accessing the Wikipe-
dia history and converting the exported version to RDF by
the DBpedia Information Extraction Framework. At sec-
ond sight a wayback functionality for DBpedia has to face
several challenges:

• Dynamic mappings and ontologies: The whole
DBpedia ecosystem is community driven and the DB-
pedia Ontology and the language mappings from Wi-
kipedia tags to the properties and classes are contin-
uously undergoing changes. As such, a Wayback ma-
chine has to handle the different versions of the ontol-
ogy and mappings. Ideally, an agent can request with
which mapping and ontology version a Wikipedia ar-
ticle is extracted and transformed into RDF.

• Evolution of the code base Similarly to the pre-
vious point, the extraction framework itself is consis-
tently improved or new extractors are added (e.g., new
extractors for tables in the article content rather than

4https://tools.ietf.org/html/rfc7089

http://wiki.dbpedia.org/services-resources/datasets/change-log
http://wiki.dbpedia.org/services-resources/datasets/change-log
http://live.dbpedia.org/
https://archive.org/web/
http://dx.doi.org/10.1145/2814864.2814889
https://tools.ietf.org/html/rfc7089

193

only the infoboxes). This could cause inconsistent rep-
resentation of a particular article at a particular time
if we always use the most up-to-date code base. The
wayback framework should cater for this and allow to
specify the set of extractors (and their version).

• Modelling revisions Considering the inherent dy-
namicity of Wikipedia and the DBpedia extraction
framework, the DBpedia Wayback Machine has to pro-
vide very detailed provenance information for the ex-
tracted RDF such that an agent has full information
about the origin and transformation process.

• Detecting changes in the RDF version While
the Wikipedia revision API gives us full access to all
changes for an Wikipedia article, not all of these revi-
sions result in changes in the return of the DBpedia ex-
traction framework (e.g., changes in parts of the article
which are not extracted by the current framework). To
accurately capture and represent the change history of
an DBpedia representation, we need algorithms which
allow us to detect if a Wikipedia change would also
trigger an RDF change.

In the reminder of this work, we briefly introduce a use
case for the DBpedia Wayback Machine (Section 2), and
present our framework, the wayback process, design choices
and functionalities (Section 3). We conclude and devise fu-
ture work in Section 4.

2. USE CASE - CITY DATA PIPELINE

Studies like the Green City Index assess and compare the
performance of cities regarding their environmental impact
and are helpful for public awareness but also for administra-
tion and infrastructure providers. They are based on large
collections of data sources which should be timely updated
easy accessibly by open standards (e.g., RDF, SPARQL),
and integrated by a unified vocabulary. The Open City Data
Pipeline [2] is a platform which supports such indexes by in-
tegrating several data sources like Eurostat Urban Audit
and DBpedia. DBpedia is a suitable source for city indica-
tors since it contains data on topics like geography, demog-
raphy, and weather in the Wikipedia infoboxes. Some of
these properties remain static (e.g., city’s coordinates) and
can be extracted from traditional DBpedia APIs (e.g., the
SPARQL Endpoint). However, time-series data that change
across time (like the total population or average tempera-
ture) and are overwritten in Wikipedia, hence DBpedia only
holds the most recent value (at the moment of extraction).
The City Data Pipeline uses the DBpedia Wayback Machine
to load time-series data of cities by accessing the revision his-
tory monthly, filtering selected properties. These are then
integrated and are accessible in the City Data Pipeline.

3. DBPEDIA WAYBACK MACHINE

The architecture of the DBpediaWayback Machine (DWM)
framework is depicted in Figure 1 and consists of several
modules and services, explained in the following. The frame-
work is developed in Scala5 which facilitates the integration
of the DBpedia components, also developed in Scala.

5http://www.scala-lang.org/

Figure 1: DBpedia Wayback Machine Architecture.

3.1 Operations
We currently offer three operations for a given Wikipe-

dia article (or resource), expecting as input the Wikipedia
article title (in English) and additional parameters.

(a) GET Revisions: This is the initial operation to query
the revision history of a resource. The framework takes the
resource URI and the latest timestamp(s) as an input and
performs the following steps:

1. The Wikipedia MediaWiki API is queried to extract
the revisions of a single timestamp or a time range;

2. The received revision information is converted into triples
using our data model, described in Section 3.2.

The main access point for the entire revision history of a Wi-
kipedia resource is the MediaWiki revision API6. We query
this API and extract the revisions as XML using the query
parameters action=query&prop=revisions&format=xml to
obtain the fields ids, timestamp, userid, etc. We convert the
resulting MediaWiki XML into the internal format required
by the DBpedia Extraction Framework.

(b) GET Version (by date / revision ID): This operation
returns the “historical” RDF version for a given Wikipedia
article based on a specified date or revision ID. In case a
date is specified, we map its value to the closest revision ID.
We perform the following processing pipeline:

1. We extract the MediaWiki version of the article for the
given revision ID using the Wikipedia MediaWiki API ;

2. The DBpedia Information Extraction Framework [1]
(DEF) is applied to convert the MediaWiki content
into its DBpedia format, represented by RDF quads;

3. The requested return format is determined by using
content-negotiation. Our framework supports the typ-
ical RDF serialisation formats (such as RDF/XML,
turtle or n3). However, we currently distinguish be-
tween a triple and quad representation and provide
more details in Section 3.2.

The DEF is a collection of several modules (Core, Server,
Live, andWiktionary), the DBpedia ontology, and mappings
to convert Wikipedia articles to their DBpedia version. In
the Core module are the various extractors (see [1] for de-
tails) for different parts of a Wikipedia article such as labels,
abstracts, categories, and the infobox. Our current frame-
work uses only the InfoboxExtractor to extract the DBpedia
version.

(c) GET changes (between two versions): This oper-

6https://en.wikipedia.org/w/api.php

http://www.scala-lang.org/
https://en.wikipedia.org/w/api.php

194

Figure 2: DBpedia Wayback Machine website.

ation computes the difference between two DBpedia revi-
sions. To do so, we apply our GET Version function
for an article and the two specified revisions and convert
the resulting RDF statements into quads. Next, we sort
the resulting quads in lexicographically order and perform a
line-oriented data comparison (e.g., similar to GNU Diff)7

based on Myer’s diff algorithm [5] to compute the added
and deleted statements between the two versions. The algo-
rithm calculates the minimum number of symbol deletions
and insertions that transform from one sequence to another.

Resource optimisation.
We observed that converting a Wikipedia article into DB-

pedia version takes roughly around 1 to 2 seconds. As
such, we only process an article for a given version once
and cache the results to disk. Optionally, we filter out
the resulting RDF statements which are part of the DB-
pedia ontology, such as property type assertions (e.g., <db-
pedia:population> <rdf:type> <rdf:property>) and la-
bels (e.g., <dbpedia:population> <rdfs:label> "Inhabi-

tants"). This filter is interesting for use cases that require
only the time-series values of articles. In such scenarios it is
more resource optimal to integrate the full DBpedia ontol-
ogy together with the compact versions.

Mappings & DBpedia Ontology.
We currently use the most recent DBpedia ontology and

mappings for the conversion.8 An open issue is to use past
versions to exactly retrieve what one would see at a given
timestamp. Note that mappings are interpreted by extrac-
tors, whose past code should be retrieved from the GIT
repository of DEF. Thus, we currently focus on providing
a fresh view (with the recent and potentially more accurate
mappings) of historical data.

3.2 Revision Ontology & Data Model

The revision ontology of the DWM framework is directly
derived from the MediaWiki representation of the revision
data. The basic properties are mapped from MediaWiki and
include id, timestamp, user, comment, sha1, and parentid.
The custom properties describe linking, provenance, and
version comparison information. The linking properties re-
fer to Wikipedia by sourceWiki, to DBpedia by source and
to the extracted version by data. The provenance properties
include the version of the DBpedia ontology, the extraction

7http://www.gnu.org/software/diffutils/
8taken from http://wiki.dbpedia.org/Downloads

framework (i.e., DEF), the extraction date, and used extrac-
tors (e.g., the infobox extractor). The version comparison
information include the difference to the last version of the
MediaWiki (resp. DBpedia) export denoted as diffwiki

(resp. diffrdf). The provenance and version comparison
properties are only created when the DBpedia versions are
already cached, or the GET changes operation is used.

Depending on the output representation, we either return
quads or triples. For quads, the revision ID is encoded in
the 4th element resulting in <DBpediaSubject> <Predicate>

<Object> <Revision>. For triples, we provide two versions.
In the first, we use our own dereferenceable URI for the sub-
ject by moving the revision ID into it resulting in <OwnSub-

ject/Revision> <Predicate> <Object>. In the second, we
strip the quads by the context and keep the subjects which
results in <DBpediaSubject> <Predicate> <Object>. We
support two representations for triples, since some use cases
demand a single RDF graph with dereferenceable URIs (i.e.,
reasoners), others need RDF fragments with original URIs
(i.e., archiving systems).

The example represents the revision 607920704 of Vienna:

@prefix : <http://data.wu.ac.at/wayback/dbepdia/> .
@prefix wb: <http://data.wu.ac.at/wayback/ns#> .
:Vienna/revision/id/607920704 a wb:Revision ;

wb:revid 607920704 ;
wb:parentid 607920550 ;
wb:source <http://en.dbpedia.org/resource/Vienna> ;
wb:data :Vienna/id/607920704
...
wb:extractedTime "2015-06-18T15:13:03Z"^^xsd:dateTime ;
wb:comment "Example" .

The DBpedia version of this revision is by quads:

<http://en.dbpedia.org/resource/Vienna>
<http://en.dbpedia.org/property/population> "1765649"

<http://en.dbpedia.org/resource/Vienna>
wb:hasRevision :Vienna/revision/id/607920704 .

and as triples first with original URIs as follows:

<http://en.dbpedia.org/resource/Vienna>
wb:hasRevision :Vienna/revision/id/607920704 .

<http://en.dbpedia.org/resource/Vienna>
<http://en.dbpedia.org/property/population> "1765649" .

and using the custom URIs in the triples as:

:Vienna/id/607920704
wb:hasRevision :Vienna/revision/id/607920704 .

:Vienna/id/607920704
<http://en.dbpedia.org/property/population> "1765649" .

3.3 UI & API

The DWM can be publicly accessed by the User Interface
(UI) at our website9 or querying our RESTful API so that
third-party applications can be built on top of our proposal.
In addition, our URIs are fully dereferenceable and com-
ply with Linked Open Data principles. Figure 2 shows our
DWM UI which is similar to typical search UIs. To travel
back in time, a user provides the DBpedia resource and the
timestamp. Then, it offers the possibility (a) to run the
DWM, i.e. to get the DBpedia extraction of that resource
at the given timestamp or (b) to retrieve the revision meta-
data history of the resource from that timestamp.10 Note
that this latter includes information and a link to each revi-
sion (as explained in Section 3.2), hence it is interesting for
automatically inspecting each revision.

9http://data.wu.ac.at/wayback/
10by default 100 revisions from the given timestamp

http://www.gnu.org/software/diffutils/
http://wiki.dbpedia.org/Downloads
http://data.wu.ac.at/wayback/

195

Operation Description

[GET] http://data.wu.ac.at/wayback/dbpedia Base URI of the RESTful API

A /{title}/timestamp/{date} Get DBpedia extraction of {title} at timestamp {date}

B /{title}/id/{revID} Get DBpedia extraction of {title} at Wikipedia revision {revID}

C /{title}/revision/timestamp/{date} Get revision metadata of DBpedia {title} at timestamp {date}

D /{title}/revision/id/{revID} Get revision metadata of DBpedia {title} at Wikipedia revision {revID}

E /{title}/diff/timestamp/{date 1}/{date 2} Get the number of different triples between the given dates

F /{title}/diff/id/{revID 1}/{revID 2} Get the number of different triples between the given Wikipedia revision IDs

?format={format} (or HTTP content negotiation) Get content in RDF {format} (N-Quads, N-Triples, Turtle, Trig, JSON, XML)

?limit={limit} Set the upper bound on the number of revisions returned (default is 100) for op. C .
?originalURIs=true|false [true] Keep subject URIs of the DBpedia resources (default), or

[false] introduce our dereferenceble URIs scheme ({title}/id/{revID})

Table 1: RESTful API of the DBpedia Wayback Machine.

Figure 3: RESTful API examples and document organization of the DBpedia Wayback Machine.

The DWM RESTful API is described in Table 1, whereas
Figure 3 depicts all operations in a real example where differ-
ent revisions and extractions for Vienna are requested. As
can be seen, the RESTful API serves basic, atomic opera-
tions, embracing a light-API/Smart-Client principle emerg-
ing in the semantic community recently. As stated, we dis-
tinguish three main operations: (i) get the DBpedia extrac-
tion (i.e. the RDF version) of a given resource, where the
timestamp (operation A) or the revision ID (operation B)
have to be provided, (ii) get revision metadata, providing
the appropriate resource and a timestamp (operation C) or
Wikipedia revision ID (operation D), and (iii) calculate the
number of different triples between two revisions (operation
E and F). Last rows of Table 1 show the parameters of
the RESTful API to set the format of the response (note
that this can be provided through HTTP content negotia-
tion in accordance with the Linked Open Data philosophy),
and the scheme of the DBpedia subjects (keep the original
by default, or replace with our dereferenceable scheme).

4. CONCLUSIONS AND FUTURE WORK

In this paper we present the DBpedia Wayback Machine,
which extends the DBpedia services with a wayback mech-
anism to get the version of a resource at any random time.
We also model and offer the metadata of revisions and a
diff comparison between version, all within the Linked Open
Data paradigm and publicly available in a RESTful API.

Several research and practical challenges remain open. We
first plan to enrich our existent Linked Open Data access
and implement the memento protocol (RFC 7089), similar

to [6], to provide content negotiation in the timestamp di-
mension. Then, we also want to allow different versions
of the DBpedia ontology, community mappings and extrac-
tors. Regarding the framework features, we aim to include
other extractors (e.g., categories) or further properties such
as the list of changed DBpedia properties between versions.
Finally, we are interested in extending this on-demand way-
back mechanism to other dynamic sources beyond DBpedia.

5. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann,

R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a
web of open data. In Proc. of ISWC, 2007.

[2] S. Bischof, C. Martin, A. Polleres, and P. Schneider.
Open City Data Pipeline - Collecting, Integrating, and
Predicting Open City Data. In Proc. of Know@LOD,
2015.

[3] D. Brickley, R. Guha, and (eds.). RDF Vocabulary
Description Language 1.0: RDF Schema. W3C
Recommendation, W3C, 2004.

[4] J. D. Fernández, A. Polleres, and J. Umbrich. Towards
Efficient Archiving of Dynamic Linked Open Data. In
Proc. of DIACHRON, 2015.

[5] E. W. Myers. An O(ND) Difference Algorithm and Its
Variations. Algorithmica, 1(2):251–266, 1986.

[6] H. Van de Sompel, R. Sanderson, M. L. Nelson, L. L.
Balakireva, H. Shankar, and S. Ainsworth. An
HTTP-based versioning mechanism for linked data. In
Proc. of LDOW, 2010.

