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Abstract. HDT (Header-Dictionary-Triples) is a compressed representation of
RDF data that supports retrieval features without prior decompression. Yet, RDF
datasets often contain additional graph information, such as the origin, version or
validity time of a triple. Traditional HDT is not capable of handling this additional
parameter(s). This work introduces HDTQ (HDT Quads), an extension of HDT
that is able to represent quadruples (or quads) while still being highly compact
and queryable. Two HDTQ-based approaches are introduced: Annotated Triples
and Annotated Graphs, and their performance is compared to the leading open-
source RDF stores on the market. Results show that HDTQ achieves the best
compression rates and is a competitive alternative to well-established systems.

1 Introduction
In little more than a decade, the Resource Description Framework (RDF) [17] and the
Linked Open Data (LOD) Cloud [4] have significantly influenced the way people and
machines share knowledge on the Web. The steady adoption of Linked Data, together
with the support of key open projects (such as schema.org, DBpedia or Wikidata), have
promoted RDF as a de-facto standard to represent facts about arbitrary knowledge in
the Web, organized around the emerging notion of knowledge graphs. This impressive
growth in the use of RDF has irremediably led to increasingly large RDF datasets and
consequently to scalability challenges in Big Semantic Data management.

RDF is an extremely simple model where a graph is a set of triples, a ternary struc-
ture (subject, predicate, object), which does not impose any physical storage solution.
RDF data management is traditionally based on human-readable serializations, which
add unnecessary processing overheads in the context of a large-scale and machine-
understandable Web. For instance, the latest DBpedia (2016-10) consists of more than
13 billion triples. Even though transmission speeds and storage capacities grow, such
graphs can quickly become cumbersome to share, index and consume.

HDT [7] tackles this issue by proposing a compact, self-indexed serialization of
RDF. That is, HDT keeps big datasets compressed for RDF preservation and sharing
and –at the same time– provides basic query functionality without prior decompression.



HDT has been widely adopted by the community, (i) used as the main backend of
Triple Pattern Fragments (TPF) [18] interface, which alleviates the traditional burden of
LOD servers by moving part of the query processing onto clients, (ii) used as a storage
backend for large-scale graph data [16], or (iii) as the store behind LOD Laundromat
[3], serving a crawl of a very big subset of the LOD Cloud, to name but a few.

One of the main drawbacks of HDT so far is its inability to manage RDF datasets
with multiple RDF graphs. HDT considers that all triples belong to the same graph,
the default graph. However, triples in an RDF dataset can belong to different (named)
graphs, hence the extension to the so-called RDF quadruples (subject, predicate, object,
graph), or quads. The graph (also called context) is used to capture information such
as trust, provenance, temporal information and other annotations [19]. Since RDF 1.1
[17] there exist standard RDF syntaxes (such as N-Quads or Trig) for representing RDF
named graphs. SPARQL, with its GRAPH keyword, allows for querying and managing
RDF named graphs, which most common triple stores have implemented. Interestingly,
while RDF compression has been an active research topic for a while now, there is
neither a compact RDF serialization nor a self-indexed RDF store for quads, to the best
of our knowledge.

In this paper we extend HDT to cope with quads and keep its compact and queryable
features. HDTQ extends the HDT format with (i) a dictionary that keeps track of all dif-
ferent graph names (or contexts) present in an RDF dataset and assigns a unique integer
ID to each of them, and (ii) a compressed bit matrix (named Quad Information) that
marks the presence (or absence) of a triple in the graphs. We propose two implementa-
tions for this matrix, Annotated Triples (HDT-AT) and Annotated Graphs (HDT-AG),
based on indexing the matrix per triple or per graph. Then, we define efficient algo-
rithms for the resolution of quad patterns, i.e. quads where each of the components can
be a variable, on top of HDTQ. Our empirical results show that HDTQ keeps compres-
sion ratios close to general compression techniques (such as gzip), excels in space w.r.t
state-of-the-art stores and remains competitive in quad pattern resolution, respecting
the low-cost philosophy of HDT. All in all, HDTQ opens up HDT to a wider range of
applications, since GRAPH querying is a key feature in triple stores and SPARQL.

The paper is organized as follows. Section 2 describes the related work and Section
3 provides preliminaries on RDF and HDT. HDTQ, the proposed extension of HDT to
handle RDF quads, is presented in Section 4, and evaluated in Section 5. We conclude
and devise future work in Section 6.

2 State of the art
RDF datasets with named graphs are traditionally serialized in standard verbose for-
mats such as N-Quads, Trig or JSON-LD [17]. Although they include some compact
features (e.g. prefixes or lists), their human-readable focus still adds unnecessary over-
heads to store and transmit large RDF datasets. Instead, HDTQ proposes a compact,
binary serialization that keeps retrieval features.

In turn, all major triple stores supporting SPARQL 1.1 also support named graphs.
Regardless of the underneath model (based on a relational schema, implementing a
native index or a NOSQL solution), RDF stores often speed up quad-based queries by
indexing different combinations of the subject, predicate, object and graph elements in
RDF [13]. Virtuoso [5] implements quads in a column-based relational store, with two
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full indexes over the RDF quads, with PSOG and POSG order, and 3 projections SP,
OP and GS. The well-known Apache Jena TDB5 stores RDF datasets using 6 B+Trees
indexes, namely SPOG, POSG, OSPG, GSPO, GPOS and GOSP. A recent approach,
RDF-4X [1] implements a cloud-based NOSQL solution using Apache Accumulo6.
In this case, quads are organized in a distributed table where 6 indexes, SPOG, POG,
OGS, GSP, GP and OS, are built to speed up all triple patterns. Blazegraph7 (formerly
BigData) follows a similar NOSQL approach making use of OGSP, SPOG, GSPO,
PGSO, POGS, and SPOG indexes.

Finally, other approaches focus on extending current triple indexes to support quads,
such as RQ-RDF-3X [14] or annotating triples with versions, such as v-RDFCSA [6].
HDTQ shares a similar annotation strategy as this latter, extending this concept to gen-
eral named graphs on top of HDT in order to achieve, to the best of our knowledge, the
first compact and queryable serialization of RDF datasets.

3 Preliminaries
This section introduces some terminology and basic concepts of RDF and HDT.

3.1 RDF and SPARQL

An RDF graph G is a finite set of triples (subject, predicate, object) from (I ∪B)× I×
(I∪B∪L), where I , B, L denote IRIs, blank nodes and RDF literals, respectively. RDF
graphs can be grouped and managed together, conforming an RDF dataset, that is, a
collection of RDF graphs [17]. Borrowing terminology from [10], an RDF dataset is
a set DS = {G, (g1, G1), . . . , (gn, Gn)} consisting of a (non-named) default graph G
and named graphs s.t. gi ∈ I are graph names. Figure 1 represents a dataset DS con-
sisting of two named graphs (aka subgraphs), graphWU and graphTU, coming from
different sources (e.g. from two universities). Note that terms8 (i.e. subjects, predicates
and objects) and triples can belong to different named graphs. For instance, the triple
(V ienna, locatedIn,Europe) is shared among the two subgraphs.

An RDF quad can be seen as an extension of a triple with the graph name (aka
context). Formally, an RDF quad q from an RDF dataset DS, is a quadruple (subject,
predicate, object, gi) from (I∪B)×I×(I∪B∪L)×I . Note that the graph name gi can
be used in other triples or quads to provide further meta-knowledge, e.g. the subgraph
provenance. We also note that quads and datasets (with named graphs) are in principle
interchangeable in terms of expressiveness, i.e. one can be represented by the other.

RDF graphs and datasets are traditionally queried using the well-known SPARQL
[10] query language. SPARQL is based on graph pattern matching, where the core
component is the concept of a triple pattern, i.e. a triple where each subject, predi-
cate and object are RDF terms or SPARQL variables. Formally, assuming a set V of
variables, disjoint from the aforementioned I , B and L, a triple pattern tp is a tuple
from (I ∪B∪V )× (I ∪V )× (I ∪B∪L∪V ). In turn, SPARQL defines ways of spec-
ifying and querying by graph names (or the default graph), using the GRAPH keyword.
To capture this, following the same convention as the triple pattern, we define a quad

5
http://jena.apache.org/documentation/tdb/index.html

6
https://accumulo.apache.org/

7
https://www.blazegraph.com/

8 All terms are IRIs whose prefix, http://example.org/, has been omitted for simplicity.
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Fig. 1: An RDF dataset DS consisting of two graphs, GraphWU and GraphTU.

pattern qp as an extension of a triple pattern where also the graph name can be provided
or may be a variable to be matched. That is, a quad pattern qp is a pair tp × (I ∪ V )
where the last component denotes the graph of the pattern (an IRI or variable).

3.2 HDT

HDT [7] is a compressed serialization format for single RDF graphs, which also allows
for triple pattern retrieval over the compressed data. HDT encodes an RDF graph G
into three components: the Header holds metadata (provenance, signatures, etc.) and
relevant information for parsing; the Dictionary provides a catalog of all RDF terms in
G and maps each of them to a unique identifier; and the Triple component encodes the
structure of the graph after the ID replacement. Figure 2 shows the HDT dictionary and
triples for all RDF triples in Figure 1, i.e. disregarding the name graphs.

HDT Dictionary. The HDT dictionary of a graph G, denoted as DG, organizes all
terms in four sections, as shown in Figure 2 (a): SO includes terms occurring both
as subject and object, mapped to the ID-range [1,|SO|]. Sections S and O com-
prise terms that only appear as subjects or objects, respectively. In order to optimize
the range of IDs, they are both mapped from |SO|+1, ranging up to |SO|+|S| and
|SO|+|O|, respectively. Finally, section P stores all predicates, mapped to [1,|P|].
Note that (i) no ambiguity is possible once we know the role played by the term, and
(ii) the HDT dictionary provides fast lookup conversions between IDs and terms.

HDT Triples. The Triples component of a graph G, denoted as TG, encodes the struc-
ture of the RDF graph after ID replacement. Logically speaking, T organizes all triples
into a forest of trees, one per different subject, as shown in Figure 2 (b): subjects are
the roots of the trees, where the middle level comprises the ordered list of predicates
associated with each subject, and the leaves list the objects related to each (subject,

4



Fig. 2: HDT Dictionary and Triples for a graph G (merging all triples of Fig. 1).

predicate) pair. This underlying representation is practically encoded with the so-called
BitmapTriples approach [7], shown in Figure 2 (c). It comprises two sequences: Sp and
So, concatenating all predicate IDs in the middle level and all object IDs in the leaves,
respectively; and two bitsequences: Bp and Bo, which are aligned with Sp and So re-
spectively, using a 1-bit to mark the end of each list. Bitsequences are then indexed to
locate the 1-bits efficiently. These enhanced bitsequences are usually called bitmaps.
HDT uses the Bitmap375 [11] technique that takes 37.5% extra space on top of the
original bitsequence size.

Triple Pattern resolution with HDT. As shown, BitmapTriples is organized by sub-
ject, conforming a SPO index that can be used to efficiently resolve subject-bounded
triple pattern queries [10] (i.e. triples where the subject is provided and the predicate
and object may be a variable) as well as listing all triples. HDT-Focused on Querying
(HDT-FoQ) [16] extends HDT with two additional indexes (PSO and OPS) to speed up
the resolution of all triple patterns.

4 HDTQ: Adding Graph Information to HDT
This section introduces HDTQ, an extension of HDT that involves managing RDF
quads. We consider hereinafter that the original source is an RDF dataset as defined
in Section 3, potentially consisting of several named graphs. For simplicity, we assume
that graphs have no blank nodes in common, otherwise a re-labeling step would be
possible as pre-processing.

4.1 Extending the HDT Components

HDT was originally designed as a flexible format that can be easily extended, e.g. to
include different dictionary and triples components or to support domain-specific ap-
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Fig. 3: HDTQ encoding of the dataset DS.

plications. In the following, we detail HDTQ and the main design decisions to extend
HDT to cope with quads. Figure 3 shows the final HDTQ encoding for the dataset
DS in Figure 1. We omit the header information, as the HDTQ extension only adds
implementation-specific metadata to parse the components.

Dictionary. In HDTQ, the previous four-section dictionary is extended by a fifth sec-
tion to store all different graph names. The IDs of the graphs are then used to annotate
the presence of the triples in each graph, further explained below. Figure 3 (a) shows the
new HDTQ dictionary encoding for the dataset DS. Compared to the dictionary shown
in Figure 2, i.e. the HDT conversion of all triples disregarding the named graphs, two
comments are in order:

– The terms of all graphs are merged together in the traditional four dictionary sec-
tions, SO, S, O, P , as explained in Section 3. This decision can potentially increase
the range of IDs w.r.t an individual mapping per graph, but it keeps the philosophy
of storing terms once, when possible.

– The graph names are organized in an independent graph section, NG (named
graphs), mapped from 1 to ng , being ng the number of graphs. Note that these
terms might also play a different role in the dataset, and can then appear duplicated
in SO, S, O or P . However, no ambiguity is possible with the IDs once we know
the role of the term we are searching for. In turn, the storage overhead of the po-
tential duplication is limited as we assume that the number of graphs is much less
than the number of unique subjects and objects. An optimization for extreme corner
cases is devoted to future work.

Triples. HDTQ respects the original BitmapTriples encoding and extends it with an
additional Quad Information (Q) component, shown in Figure 3 (b). Q represents a
boolean matrix that includes (for every triple - graph combination) the information on
whether a specific triple appears in a specific graph. Formally, having a triple-ID tj
(where j ∈ {1..m}, being m the total number of triples in the dataset DS), and a
graph-ID k (where k ∈ {1..ng}), the new Q component defines a boolean function
graph(tj , k) = {0, 1}, where 1 denotes that tj appears in the graph k, or 0 otherwise.

6



(a) Annotated Triples (b) Annotated Graphs

Fig. 4: Annotated Triples and Annotated Graphs variants for the RDF dataset DS.

4.2 Quad Indexes: Graph and Triples Annotators

HDTQ proposes two approaches to realize the Q matrix, namely Annotated Triples
(HDT-AT) and Annotated Graphs (HDT-AG). They both rely on bitmaps, traditionally
used in HDT (see Section 3).

Annotated Triples. Using the Annotated Triples approach, a bitmap is assigned to
each triple, marking the graphs in which the corresponding triple is present. A dataset
containing m triples in n different graphs has {BAT

1 , · · · , BAT
m } bitmaps each of size

n. Thus, if BAT
j [i] = 1, it means that the triple tj is present in the ith graph, being

BAT
j [i] = 0 otherwise. This can be seen in Figure 4 (a), where 11 bitmaps (one per

triple) are created, each of them of two positions, corresponding to the two graphs. In
this example, the bitmap for the first triple holds {0, 1}, meaning that the first triple,
(1,2,7), only appears in the second graph, which is graphWU.

Intuitively, Annotated Triples favors quad patterns having the graph component as
a variable, like SPO?, as only a single bitmap needs to be browsed. On the other hand,
if the graph is given, like in the pattern ???G, all of the bitmaps need to be browsed.

Annotated Graphs. This approach is orthogonal to Annotated Triples: a bitmap is
assigned to each graph, marking the triples present in the corresponding graph. Thus,
a dataset containing m triples in n different graphs has {BAG

1 , · · · , BAG
n } bitmaps

each of size m. Thus, if BAG
j [i] = 1, it means that the triple ti is present in the jth

graph, being BAG
j [i] = 0 otherwise. This can be seen in Figure 4 (b), including 2

bitmaps, each of size 11. For instance, the bitmap for the first graph, graphTU, holds
{0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0} meaning that it consists of the triples {t2, t3, t5, t6, t8, t9},
which can be found in the respective positions in BitmapTriples.

Compared to Annotated Triples, Annotated Graphs favors quad patterns in which
the graph is given, like ???G, as only a single bitmap (the bitmap of the given graph G)
needs to be browsed. On the other hand it penalizes patterns with graph variables, as all
bitmaps need to be browsed to answer the query.

Finally note that, both in HDT-AT and HDT-AG, depending on the data distribution,
the bitmaps can be long and sparse. However, in practice, HDT-AT and HDT-AG can be
implemented with compressed bitmaps [15] to minimize the size of the bitsequences.

4.3 Search Operations

The resolution of quad patterns in HDTQ builds on top of two operations inherently
provided by the BitmapTriples component (BT ):

– BT.getNextSolution(quad, startPosition). Given a quad pattern, BT removes the
last graph term and resolves the triple pattern, outputting a pair (triple, posTriple)
corresponding to the next triple solution and its position in BT. The search starts
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Algorithm 1: SEARCHQUADS - quad patterns with unbounded graphs
Input: BitmapTriples BT, Quad Information Q, quad pattern q
Output: The quads matching the given pattern

1 result← (); graph← 0
2 (triple, posTriple)← BT.getNextSolution(q, 0)
3 while posTriple 6= null do
4 graph← Q.nextGraph(posTriple, graph + 1)
5 if graph 6= null then
6 result.append(triple, graph)
7 else
8 (triple, posTriple)← BT.getNextSolution(q, posTriple)
9 graph← 0

10 return result

at the startPosition provided, in BT. For instance, in our example in Figure 3,
with a pattern quad = 7???, an operation BT.getNextSolution(quad,8)
will jump the first 8 triples in BT,{t1, · · · , t8}, hence the only solution is the pair
((7, 5, 3), 9) or, in other words, t9.

– BT.getSolutionPositions(quad). This operation finds the set of triple positions
where solution candidates appear. In subject-bounded queries, these positions are
actually a consecutive range {tx, .., ty} of BT. Otherwise, in queries such as ?P?G,
??OG and ?POG, the positions are spread across BT. For instance, t2 and t5 are
solutions for quad =?2?1, but t3 and t4 do not match the pattern.

Note that we assume that the HDT-FoQ [16] indexes (PSO and OPS) are created,
hence BT can provide these operations for all patterns. In the following, we detail the
resolution depending on whether the graph term is given or it remains unbounded.

Quad Pattern Queries with Unbounded Graph. Algorithm 1 shows the resolution
of quad patterns in which the graph term is not given, i.e. ????, S???, ?P??, ??O?,
SP??, S?O?, ?PO? and SPO?. It is mainly based on iterating through the solutions
of the traditional HDT and, for each triple solution, returning all the graphs associated
to it. Thus, the algorithm starts by getting the first solution in BT (Line 2), using the
aforementioned operation getNextSolution. While the end of BT is not reached (Line
3), we get the next graph associated with the current triple (Line 4), or null if it does
not appear in any further graph. This is provided by the operation nextGraph of Q,
explained below. If there is a graph associated with the triple (Line 5), both are appended
to the results (Line 6). Otherwise, we look for the next triple solution (Line 8).

The auxiliary nextGraph operation of Q returns the next graph in which a given
triple appears, or null if the end is reached. Algorithm 2 shows this operation for HDT-
AT. First, the bitmap corresponding to the given triple is retrieved from Q (Line 1).
Then, within this bitmap, the location of the next 1 starting with the provided graph ID
is retrieved (or null if the end is reached) and returned (Line 2). This latter is natively
provided by the bitmap indexes.

Algorithm 3 shows the same process for HDT-AG. In this case, a bitmap is associ-
ated with each graph. Thus, we iterate on graphs and access one bitmap after the other
(Line 1-7). The process ends when a 1-bit is found (Line 3), returning the graph (Line
4), or the maximum number of graphs is reached (Line 7), returning null (Line 8).
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Algorithm 2: NEXTGRAPH - AT
Input: Quad Information Q, int posTriple, int graph
Output: The position of the next graph

1 bitmap← Q[posTriple]
2 return bitmap.getNext1(graph)

Algorithm 3: NEXTGRAPH - AG
Input: Quad Information Q, int posTriple, int graph
Output: The position of the next graph

1 do
2 bitmap← Q[graph]
3 if bitmap[posTriple] = 1 then
4 return graph
5 else
6 graph← graph + 1

7 while graph ≤ Q.size()
8 return null

Algorithm 4: SEARCHQUADSG - quad patterns with bounded graphs
Input: BitmapTriples BT, Quad Information Q, quad pattern q
Output: The quads matching the given pattern

1 graph← getGraph(q); result← ()
2 sol[]← BT.getSolutionPositions(q)
3 while !sol.isEmpty() do
4 posTripleCandidateBT ← sol.pop()
5 posTripleCandidateQT ← Q.nextTriple(posTripleCandidateBT, graph)
6 if posTripleCandidateBT = posTripleCandidateQT then
7 (triple, posTriple)← BT.getNextSolution(q, posTripleCandidateBT − 1)
8 result.append(triple, graph)

9 else
10 sol.removeLessThan(posTripleCandidateQT )

11 return result

Quad Pattern Queries with Bounded Graph. Algorithm 4 resolves all quad patterns
where the graph is provided. To do so, the graph ID is first retrieved from the quad
pattern (Line 1). The aforementioned getSolutionPositions operation of BT finds the
triple positions in which the solutions can appear (Line 2). Then, we iterate on this set of
candidate positions until it is empty (Line 3). For each posTripleCandidateBT extracted
from the set (Line 4), we check if this position is associated with the given graph (Line
5), using the operation nextTriple of the Q structure. This operation, omitted for the
sake of concision as it is analogous to nextGraph (see Algorithms 2 and 3), starts from
posTripleCandidateBT and returns the next triple position (posTripleCandidateQT) that
is associated to the given graph. Thus, if this position is exactly the current candidate
position (Line 6), the actual triple is obtained for that position (Line 7), and appended to
the final resultset (Line 8). Otherwise, the candidate position was not a valid solution (it
was not related to the graph), and we can remove, from the set of candidate solutions,
all positions lesser than posTripleCandidateQT (Line 10), given that none of them are
associated to the given graph.

5 Evaluation
We evaluate the performance of HDTQ in terms of space and efficiency on quad pattern
resolution. The HDTQ prototype9, built on top of the existing HDT-Java library10, im-

9 HDTQ library: https://github.com/JulianRei/hdtq-java
10 HDT-Java library: https://github.com/rdfhdt/hdt-java
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Subjects Predicates Objects Graphs Triples Quads

BEAR
A 74,908,887 41,209 64,215,355 58 378,476,570 2,071,287,964
B day 100 1,725 69,650 89 82,401 3,460,896
B hour 100 1,744 148,866 1,299 167,281 51,632,164

LUBM500
G1 10,847,183 17 8,072,358 1 66,731,200 66,731,200
. . . . . . . . . . . . . . . . . . . . .
G9998 10,847,183 17 8,072,358 9998 66,731,200 68,823,803

LDBC 668,711 16 2,743,645 190,961 5,000,197 5,000,197
LIDDI 392,344 23 981,928 392,340 1,952,822 2,051,959

Table 1: Statistical dataset description.

plements both HDT-AG and HDT-AT approaches using existing compressed bitmaps
(called Roaring Bitmaps [15]), which are optimal for sparse bitsequences.

Datasets. Experiments are carried out on heterogeneous RDF datasets11, described in
Table 1. BEAR-A [8], a benchmark for RDF archives, includes 58 weekly crawls of a
set of domains in the LOD cloud. Each of the snapshots is considered to be a graph,
resulting in a dataset of 58 graphs. BEAR-A is relatively dynamic as 31% of the data
change between two versions, resulting in more than 2 billion quads. BEAR-B day and
BEAR-B hour [9] extend BEAR-A to consider more dynamic information. They crawl
the 100 most volatile resources in DBpedia Live over the course of three months, and
consider a new version by day or hour, respectively. Each of the versions is seen as a
graph, summing up 89 and 1,299 graphs, respectively. Given that most of the triples
remain unchanged, most triples appear in multiple graphs.

The well-known LUBM data generator [12] is also considered as a way to gener-
ate several RDF datasets with increasing number of graphs: 1, 10, 20,. . . , 100, 1,000,
2,000,. . . , 9,000 and 9,998. We first set up the generator to produce synthetic data de-
scribing 500 universities (LUBM500), which results in 66m triples. Given that the gen-
erator produces 9,998 files, {f1, f2 · · · , f9998}, we first consider an RDF dataset with
a graph per file, {g1, g2 · · · , g9998}, named as LUBM500-G9998. Then, to generate a
dataset with an arbitrary number of graphs n (n <= 9998), each file fj was merged to
a graph gi, where i = j mod n. For simplicity, Table 1 only shows LUBM500-G1 and
LUBM500-G9998. In general, triples are rarely repeated across graphs.

LDBC12 regards the Semantic Publishing Benchmark (SPB), which considers di-
verse media content. We use the default SPB 2.0 generator that generates more than
190k named graphs, where each triple appears only in one graph.

Finally, the Linked Drug-Drug Interactions (LIDDI) dataset [2] integrates multiple
data collections, including provenance information. This results in an RDF dataset with
an extremely large number of graphs, 392,340, as shown in Table 1.

Triple Stores. We compare HDTQ against two well-known triple stores in the state
of the art, Apache Jena TDB 2.10 store13 and Virtuoso 7.1 Open Source14. Following

11 Datasets, queries, scripts, raw results and additional material is available at: https://aic.ai.
wu.ac.at/qadlod/hdtq/eswc2018/

12 LDBC: http://ldbcouncil.org/developer/spb
13 Apache Jena: http://jena.apache.org
14 Virtuoso: http://virtuoso.openlinksw.com
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Size (GB) gzip HDT-AG HDT-AT Jena Virtuoso Virtuoso+

BEAR
A 396.9 5.8% 2.3% 2.8% 96.8% NA NA
B day 0.6 4.8% 0.7% 0.8% 97.7% 13.7% 33.7%
B hour 9.7 4.8% 0.3% 0.1% 96.4% 4.3% 25.6%

LUBM500
G1 11.4 3.0% 6.6% 17.0% 118.8% 17.2% 21.0%
G9998 11.6 3.0% 6.6% 16.7% 120.1% 17.5% 27.5%

LDBC 0.9 9.7% 15.9% 25.1% 126.3% 71.2% 80.8%
LIDDI 0.7 3.7% 11.8% 15.6% 78.1% 49.9% 53.4%

Table 2: Space requirements of different systems.

Virtuoso instructions, we also consider a variant, named as Virtuoso+, which includes
an additional index (GPOS) that may speed up quad patterns where the subject is not
given. Experiments were performed in a -commodity server- (Intel Xeon E5-2650v2
@ 2.6 GHz, 16 cores, RAM 180 GB, Debian 7.9). Reported (elapsed) times are the
average of three independent executions. Transactions are disabled in all systems.

5.1 Space Requirements and Indexing Time

Table 2 lists the space requirements of the uncompressed RDF datasets in N-Quads
notation (column “Size”), in gigabytes, the respective gzipped datasets (column “gzip”)
and the systems under review, as the ratio between the size for the required space and
the uncompressed size. The numbers reported for HDT-AG and HDT-AT include the
size of HDTQ and the additional HDT indexes (created with HDT-FoQ [16]) needed to
resolve all quad patterns15. Note that Virtuoso was not capable of importing the BEAR-
A dataset due to a persistent error when inserting large quad data. In fact, a similar bug
in the current Java implementation of Roaring Bitmaps [15] made us use Bitmap375
[11] for this particular scenario, as the HDTQ prototype supports both implementations
interchangeably, being transparent to users consuming/querying HDTQ.

As expected, gzip achieves large space savings that outperform the space needs of
the RDF stores. However, HDTQ improves upon gzip in all BEAR datasets, where a
large amount of (verbose) triples are shared across graphs. In this scenario, HDTQ is
able to mitigate the repetitions thanks to the dictionary and Quad Information structures.

HDTQ outperforms Jena and Virtuoso in all datasets, being particularly noticeable
in BEAR datasets (1-2 levels of magnitude smaller), with a limited number of graphs
(58 to 1,299) and many shared triples across graphs. HDTQ gains are still noticeable in
LDBC (3 to 5 times smaller than Virtuoso and Jena) with a very large number of graphs
(190k) and no shared triples. Similar results are obtained in LIDDI, with 392k graphs.

In turn, HDT-AG reports better compression ratios than HDT-AT (except for a small
difference in BEAR-B hour). The main reason lies in the compressed implementation
of the bitmaps [15] that exploits consecutive runs of 0’s or 1’s to achieve further com-
pression. In most of the cases, longer runs are produced when annotating the triples per
graph (HDT-AG), than viceversa (HDT-AT). In fact, HDT-AT largely outperforms all
systems except for LUBM, where the compression is only slightly better than Virtuoso
(without additional indexes) given that triples are mostly present in one single graph,
hence HDT-AT needs to pay the price of storing multiple bitmaps (one per triple), each
of them representing just a single value. In LDBC, with a similar scenario, the HDT-

15 The HDTQ website additionally includes the size of each structure of HDT and HDTQ.
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Fig. 5: Space requirements for the LUBM500 datasets with increasing number of graphs.

Fig. 6: Indexing times (in s) of the RDF datasets. Fig. 7: Indexing times (in s) of LUBM500 datasets.

AT overhead is compensated by the overall compression of the dictionary and triples
components, and HDTQ still excels in space.

Figure 5 shows the space requirements (in MB, and log log scale) of LUBM500
at increasing number of graphs (1, 10, 20,. . . , 100, 1,000, 2,000,. . . , 9,000 and 9,998),
where few triples are shared across graphs. All systems, including HDTQ, demand close
to constant size regardless of the number of graphs. The exception is Virtuoso+, as it
pays the price of the additional index GPOS.

Figure 6 represents (in log log scale) the indexing times of the RDF datasets in
Table 2, sorted by the number of quads of each dataset. For HDT-AG and HDT-AT,
this includes the creation of all components (standard HDT and HDT-FoQ, and the
novel graph dictionary and Quad Information structures). Virtuoso is the fastest sys-
tem regarding creation time in all cases, except for the failed BEAR-A. In mostly all
cases, Jena doubles the time required by HDTQ. As expected, the time in all systems
shows a linear growth with an increasing number of quads. In turn, Figure 7 focuses
on LUBM500 at increasing number of graphs. In general, Jena and Virtuoso perfectly
scale in this scenario, whereas HDTQ pays the overhead of the creation of increasing
large bitmaps in HDT-AG and HDT-AT. Nonetheless, the overhead is limited and the
creation can be seen as a one-off cost by the publisher.

5.2 Performance for Quad Pattern Resolution

To test the performance of the systems, we select, for each dataset, 100 random queries
for each combination of quad patterns (except for the pattern ???? and those patterns
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(a) Cold compared to HDT-AT. (b) Warm compared to HDT-AT.

(c) Cold compared to HDT-AG. (d) Warm compared to HDT-AG.

Fig. 8: BEAR-B day quad pattern resolution speed.

such as ?P?? where the data distribution prevents from having 100 different queries).
Each query is then executed in two scenarios: cold, where cache was first cleared, and
warm, which considers a warmup by first querying ???? and taking 100 results.

Figures 8 and 9 show the averaged resolution times of the selected queries for two
exemplary datasets, BEAR-B day with limited number of named graphs and many re-
peated triples across graphs, and LIDDI, with opposite characteristics. In these figures,
a k number above the x-axis means that HDTQ is k times faster than the compared
system. A k number below shows that the system is k times faster than HDTQ.

Results for HDT-AT in BEAR-B day, Figures 8a and 8b, show that HDT-AT, while
taking 1-2 order of magnitude less in space, excels in subject-based queries (in special
S??? and S??G), in cold and warm scenarios. In contrast, it is penalized in predicate-
based queries (such as ?P?? and ?P?G). This result is in line with previous HDT-FoQ
[16] remarks, which shows that adding the quad information as a triple annotation in
HDT-AT keeps the retrieval features of HDT.

HDT-AG reports less promising numbers in Figures 8c and 8d. As expected, listing
the triples by graphs (???G) is extremely efficient. However, HDT-AG design penalizes
most operations, in particular those with unbounded graphs, as results must be first
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(a) Cold compared to HDT-AT
.

(b) Warm compared to HDT-AT
.

Fig. 9: LIDDI quad pattern resolution speed.

found, and then all graph bitmaps have to be accessed to check the presence of the
triple. In contrast HDT-AT allows for quickly jumping to the next solution (the next
1-bit annotation) of the triple.

Figure 9 shows the performance of HDT-AT in LIDDI, with almost 400k different
graphs. In such extreme case, HDT-AT still remains competitive for most queries, al-
though it still pays the price of HDT-FoQ in some predicate-based queries and graph
listing (???G). In this case, although HDT-AG achieves the best compression, it was
unable to compete, being 1-2 orders of magnitude slower in most cases.

These results show that, in a general case, HDT-AT should be preferred over HDT-
AG as it provides the best space/performance tradeoff. Nonetheless, HDT-AG remains a
candidate solution to achieve greater space savings with reasonably performance if the
number of graphs is limited. Given that HDT-AG excels when listing graphs, further
inspection of a combined approach (AG-AT) is devoted to future work.

6 Conclusions and Future Work
This work presents HDTQ as an extension of HDT, a compact and queryable serializa-
tion of RDF, to support RDF datasets including named graphs (quads). HDTQ considers
a new dictionary to uniquely store all different named graphs, and a new Quad Infor-
mation component to annotate the presence of the triples in each graph of the RDF
dataset. Two realizations of this component are proposed, HDT-AG and HDT-AT, and
space/performance tradeoffs are evaluated against different datasets and state-of-the-art
stores. Results show that HDTQ keeps the same HDT features, positioned itself as a
highly compact serialization for RDF quads that remains competitive in quad pattern
resolution. Our ongoing work focuses on inspecting an hybrid AT-AG strategy for the
quad information and supporting full SPARQL 1.1. on top of HDTQ. To do so, we plan
to use HDTQ as a backend store within existing frameworks, such as Jena.
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