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Abstract. There is an emerging demand on techniques addressing the
problem of efficiently archiving and (temporal) querying different ver-
sions of evolving semantic Web data. While systems archiving and/or
temporal querying are still in their early days, we consider this a good
time to discuss benchmarks for evaluating storage space efficiency for
archives, retrieval functionality they serve, and the performance of var-
ious retrieval operations. To this end, we provide a blueprint on bench-
marking archives of semantic data by defining a concise set of operators
that cover the major aspects of querying of and interacting with such
archives. Next, we introduce BEAR, which instantiates this blueprint to
serve a concrete set of queries on the basis of real-world evolving data.
Finally, we perform an empirical evaluation of current archiving tech-
niques that is meant to serve as a first baseline of future developments
on querying archives of evolving RDF data.

1 Introduction

Nowadays, RDF data is ubiquitous. In less than a decade, and thanks to active
projects such as the Linked Open Data (LOD)[3] effort or schema.org, researchers
and practitioners have built a continuously growing interconnected Web of Data.
In parallel, a novel generation of semantically enhanced applications leverage this
infrastructure to build services which can answer questions not possible before
(thanks to the availability of SPARQL [12] which enables structure queries over
this data). As previously reported by [25, 13], the published data is continu-
ously undergoing changes (on a data and schema level). These changes naturally
happen without a centralized monitoring nor pre-defined policy, following the
scale-free nature of the Web. Applications and businesses leveraging the avail-
ability of certain data over time, and seeking to track data changes or conduct
studies on the evolution of data, thus need to build their own infrastructures
to preserve and query data over time. Moreover, at the schema level, evolving
vocabularies complicate re-use as inconsistencies may be introduced between
data relying on a previous version of the ontology, which can lead to failure of a
system, such as an inference tool.

Thus, archiving policies of Linked Open Data (LOD) collections emerge as
a novel –and open– challenge aimed at assuring quality and traceability of Se-
mantic Web data over time. While sharing the same overall objectives with



Fig. 1: Example of RDF graph versions.

traditional Web archives, such as the Internet Archive1, the archives for the
Web of Data should offer capabilities for time-traversing and structural queries.

Initial RDF archiving policies/strategies [7] mainly consider three design
models, namely independent copies (IC), change-based (CB) and timestamp-
based (TB) approaches. In IC, each version is managed as a different, isolated
dataset. Conversely, a baseline version and differences (deltas) between consec-
utive versions are stored in CB. Finally, in TB each statement locally holds
the validity of the version, whereas in a range or just denoting modifications
(typically version numbers or timestamps of addition and deletion).2

In general, these strategies are not implemented at large scale, and existing
archiving infrastructures do not support structured and time-traversing queries
in demand: for instance, knowing if a dataset, or a particular entity has changed
goes beyond the current expressiveness of SPARQL itself, but, notably, also
beyond the capability of most temporal extensions of SPARQL [8].

This paper anticipates the development of definitive solutions for archiving
and querying Semantic Web data, and tackles the problem of evaluating the effi-
ciency of the required retrieval demands. To the best of our knowledge, no work
has been proposed to systematically benchmarking RDF archives. Existing RDF
versioning and archiving solutions focus so far on providing feasible proposals for
partial coverage of possible use case demands. Somewhat related, but not cov-
ering the specifics of (temporal) querying over archives, existing RDF/SPARQL
benchmarks focus on static [1, 4, 21], federated [15] or streaming data [5] in cen-
tralized or distributed repositories. Thus, they obviate the particularities of RDF
archiving, where querying entities across time is a crucial aspect.

In order to fill this gap, we provide foundations for the problem of bench-
marking the efficiency of policies and strategies to archive and query evolving
semantic Web data. Our main contributions are: (i) Based on an analysis of
current RDF archiving proposals (Section 2), we provide a theoretical blueprint
categorizing the type of retrieval demands and query operators involved (Section
3); (ii) we present BEAR, a concrete benchmark that makes use of real-world
data snapshots extracted from the Dynamic Linked Data Observatory [13] (Sec-
tion 4). We describe queries with varying complexity, covering a broad range
of archiving use cases; finally, (iii) we have implemented current RDF archiving
policies/strategies and evaluate them using BEAR to both set a baseline and
illustrate our proposal (Section 5).

1 http://archive.org.
2 In the course of this paper, whenever we talk about time/validity, we talk about
transaction time [10], i.e. time of retrieval of the snapshot of dataset to be archived.



Focus

Type
Materialisation

Structured Queries

Single time Cross time

Version Version Materialisation Single-version structured queries Cross-version structured queries

-get snapshot at time ti -lectures given by certain teacher at time ti -subjects who have played the role of student
and teacher of the same course

Delta Delta Materialisation Single-delta structured queries Cross-delta structured queries

-get delta at time ti -students leaving a course between two con-
secutive snapshots, i.e. between ti−1 , ti

-evolution of added/deleted students across
versions

Table 1: Classification and examples of retrieval needs.

2 Preliminaries

We briefly summarise the necessary findings of our previous work in which we
surveyed current archiving techniques for dynamic Linked Open Data [7]. The
use case is depicted in Figure 1, which shows an RDF archive with three versions
(a formal definition on archives and versions is provided in Section 3): the original
version V1 models two students ex:S1 and ex:S2 of a course ex:C1, whose professor
is ex:P1. In the second version, the ex:S2 student disappeared in favour of a new
student, ex:S3. In the last version, the former professor ex:P1 leaves the course
to a new pair of professors: a new professor ex:P2 and the former student ex:S2
who reappears now playing the role of a professor.

2.1 Retrieval Functionality

Given the relative novelty of archiving and querying evolving semantic Web data,
retrieval needs are neither fully described nor broadly implemented in practical
implementations (described below). First categorizations [7, 22] are compiled in
Table 1. This classification distinguishes six different types of retrieval needs,
mainly regarding the query type (materialisation or structured queries) and the
main focus (version/delta) of the query.

Version materialisation is a basic demand in which a full version is retrieved.
In fact, this is the most common feature provided by revision control systems and
other large scale archives, such as current Web archiving that mostly dereferences
URLs across a given time point.3

Single-version structured queries are queries which are performed on one
specific version. One could expect to exploit current state-of-the-art query reso-
lution in RDF management systems, with the additional difficulty of maintaining
and switching between all versions.

Cross-version structured queries, also called time-traversal queries, add a
novel complexity since these queries must be satisfied across different versions.

Delta materialisation retrieves the differences (deltas) between two or more
given versions. This functionality is largely related to RDF authoring and other
operations from revision control systems (merge, conflict resolution, etc.). There
exist several approaches to compute the deltas between two RDF versions; low-
level deltas [27] at the level of triples, distinguishing between added (∆+) and
deleted (∆−) triples, or high-level deltas [19] which are human-readable expla-
nations (e.g. deltas can state that a class has been renamed, and this affects all

3 See the Internet Archive effort, http://archive.org/web/.



the instances). High-level deltas are more descriptive and can be more concise,
but this is at the cost of relying on an underlying semantics (such as RDFS or
OWL), and they are more complex to detect and manage [28].

Likewise, the single-delta structured queries and cross-delta struc-
tured queries are the counterparts of the aforementioned version-focused queries,
but must be satisfied on change instances of the dataset. For instance one could
retrieve students leaving a course between two versions, or the evolution in the
number of added/deleted students or teachers across several version.

2.2 Archiving Policies and Retrieval Processing

Main research efforts addressing the challenge of RDF archiving fall in one of
the following three storage strategies [7]: independent copies (IC), change-based
(CB) and timestamp-based (TB) approaches.

Independent Copies (IC) [14, 18] is a basic policy that manages each version
as a different, isolated dataset. It is, however, expected that IC faces scalability
problems as static information is duplicated across the versions. Besides simple
retrieval operations such as version materialisation, other operations require non-
negligible processing efforts. A potential retrieval mediator should be placed
on top of the versions, with the challenging tasks of i) computing deltas at
query time to satisfy delta-focused queries, ii) loading/accessing the appropriate
version/s and solve the structured queries, and iii) performing both previous
tasks for the particular case of structured queries dealing with deltas.

Change-based approach (CB) [27, 6, 29] partially addresses the previous
scalability issue by computing and storing the differences (deltas) between ver-
sions. For the sake of clarity and simplicity, in this paper we focus on low-level
deltas (added or deleted triples). As stated, complementary works tackle high-
level delta management [19, 17] but they focus on materialisation retrieval [28].

A query mediator for this policy manages a materialised version and the
subsequent deltas. Thus, CB requires additional computational costs for delta
propagation which affects version-focused retrieving operations. Different alter-
natives have been proposed such as computing reverse deltas (storing a mate-
rialisation of the current versions and computing the changes with respect to
this) or providing full version materialisation in some intermediate steps [6, 22],
at the cost of augmenting space overheads.

Timestamp-based approach (TB) can be seen as a particular case of time
modelling in RDF [24, 23, 11, 30], where each triple is annotated with its tempo-
ral validity. Likewise, in RDF archiving, each triple locally holds the timestamp
of the version. In order to save space avoiding repetitions, practical proposals
annotate the triples only when they are added or deleted. That is, the triples
are augmented by two different fields: the created and deleted (if present) times-
tamps [16, 26, 9]. This latter constitutes the most practical approaches, which
manage versions/deltas under named/virtual graphs, so that the retrieval medi-
ator can rely on existing solutions providing named/virtual graphs. Except for



delta materialisation, all retrieval demands can be satisfied with some extra ef-
forts given that i) version materialisation requires to rebuild the delta similarly
to CB, and ii) structured queries may need to skip irrelevant triples [16].

3 Evaluation of RDF Archives: Challenges and Guidelines

Previous considerations on RDF archiving policies and retrieval functionality set
the basis of future directions on evaluating the efficiency of RDF archives. The
design of a benchmark for RDF archives should meet three requirements:
– First, the benchmark should be archiving-policy agnostic both in the

dataset design/generation and the selected set of queries to do a fair com-
parison of different archiving policies.

– Early benchmarks should mainly focus on simpler queries against an increas-
ing number of snapshots and introduce complex querying once the policies
and systems are better understood.

– While new retrieval features must be incorporated to benchmark archives,
one should consider lessons learnt in previous works on RDF data manage-
ment systems [1].
Besides these particular considerations, in general we briefly recall here the

four most important criteria when designing a domain-specific benchmark [10]:
Relevancy (to measure the performance when performing typical operations of
the problem domain, i.e. archiving retrieval features), portability (easy to im-
plement on different systems and architectures, i.e. RDF archiving policies),
scalability (apply to small and large computer configurations, which should be
extended in our case also to data size and number of versions), and simplicity.

In the following, we formalize features and challenges on the design of the
benchmark data and queries. Most of these features will be instantiated in the
next section to provide a concrete experimental testbed.

3.1 Dataset Configuration

We first provide semantics for RDF archives and adapt the notion of temporal
RDF graphs by Gutierrez et al. [11]. In this paper, we make a syntatic-sugar
modification to put the focus on version labels instead of temporal labels. Note,
that time labels are a more general concept that could lead to time-specific op-
erators (intersect, overlaps, etc.), which is complementary –and not mandatory–
to RDF archives.

Let N be a set of version labels in which a total order is defined.

Definition 1 (RDF Archive). A version-annotated triple is an RDF triple
(s, p, o) with a label i ∈ N representing the version in which this triple holds,
denoted by the notation (s, p, o) : [i]. An RDF archive graph A is a set of version-
annotated triples.

Definition 2 (RDF Version). An RDF version of an RDF archive A at snap-
shot i is the RDF graph A(i) = {(s, p, o)|(s, p, o) : [i] ∈ A}. We use the notation
Vi to refer to the RDF version A(i).



As basis for comparing different archiving policies, we introduce four main
features to describe the dataset configuration, namely data dynamicity, data
static core, total version-oblivious triples and RDF vocabulary. The main ob-
jective is to precisely describe the important features of the benchmark data;
although these blueprint could serve in the process of automatic generation of
synthetic benchmark data, this is not addressed in this paper.

Data dynamicity. This feature measures the number of changes between ver-
sions, considering these differences at the level of triples (low-level deltas [29]).
Thus, data dynamicity is mainly described by the change ratio and the data
growth between versions, which we formally define as follows:

Definition 3 (Version change ratio). Given two versions Vi and Vj , with
i < j, let ∆+

i,j and ∆−
i,j two sets respectively denoting the triples added and

deleted between these versions, i.e. ∆+
i,j = Vj \Vi and ∆−

i,j = Vi \Vj. The change
ratio between two versions denoted by δi,j, is defined by

δi,j =
|∆+

i,j∪∆
−
i,j |

|Vi∪Vj |
.

In turn, the insertion δ+i,j =
|∆+

i,j |

|Vi|
and deletion δ−i,j =

|∆−
i,j |

|Vi|
ratios provide further

details on the proportion of inserted and add triples.

Definition 4 (Version data growth). Given two versions Vi and Vj, having
|Vi| and |Vj | different triples respectively, the data growth of Vj with respect to
Vi, denoted by, growth(Vi, Vj), is defined by

growth(Vi, Vj) =
|Vi|+|Vj|
|Vi∪Vj |

.

In archiving evaluations, one should provide details on three related aspects,
δi,j , δ

+
i,j and δ−i,j , as well as the complementary version data growth, for all pairs

of consecutive versions. Note that most archiving policies are affected by the
frequency and also the type of changes. For instance, the space requirements
for the IC policy increases with the static and the added information (δ+i,j),

but decreases with the number of deletions (δ−i,j). In contrast, timestamp-based
approaches store all changes, hence it is affected by the general dynamicity (δi,j).

Data static core. The static core of an archive contains the triples that are
available in all versions, formally defined as follows:

Definition 5 (RDF archive static core). For an RDF archive A, the static
core CA = {(s, p, o)|∀i ∈ N , (s, p, o) : [i] ∈ A}

This feature is particularly important for those archiving policies that, whether
implicitly or explicitly, represent such static core. In a change-based approach,
the static core is not represented explicitly, but it inherently conforms the triples
that are not duplicated in the versions, which is an advantage against other poli-
cies such as IC. It is worth mentioning that the static core can be easily computed
taking the first version and applying all the subsequent deletions.



Total version-oblivious triples. This computes the total number of different
triples in an RDF archive independently of the timestamp. Formally speaking:

Definition 6 (RDF archive version-oblivious triples). For an RDF archive
A, the version-oblivious triples OA = {(s, p, o)|∃i ∈ N , (s, p, o) : [i] ∈ A}

This feature serves two main purposes. First, it points to the diverse set
of triples managed by the archive. Note that an archive could be composed of
few triples that are frequently added or deleted. This could be the case of data
denoting the presence or absence of certain information, e.g. a particular case
of RDF streaming. Then, the total version-oblivious triples are in fact the set of
triples annotated by temporal RDF [11] and other representation policies based
on annotation (such as AnQL [30]). Note that these follow a merge strategy so
that different annotations for the same triple are merged in an annotation set
(which results often in an interval or a set of intervals).

RDF vocabulary. In general, we cover under this feature the main aspects
regarding the different subjects (SA), predicates (PA), and objects (OA) in the
RDF archive A. Namely, we put the focus on the RDF vocabulary per version
and the vocabulary set dynamicity, defined as follows:

Definition 7 (RDF vocabulary per version). For an RDF archive A, the
vocabulary per version is the set of subjects (SVi

), predicates (PVi
) and objects

(OVi
) for each version Vi in A.

Definition 8 (vocabulary set dynamicity). The dynamicity of a vocabulary
set K, being K one of {S, P,O}, over two versions Vi and Vj, with i < j, denoted
by vdyn(K,Vi, Vj) is defined by

vdyn(K,Vi, Vj) =
|(KVi

\KVj
)∪(KVj

\KVi
)|

|KVi
∪KVj

|

Likewise, vdyn+(K,Vi, Vj) =
|KVj

\KVi
|

|KVi
∪KVj

| and vdyn−(K,Vi, Vj) =
|KVi

\KVj
|

|KVi
∪KVj

|

define the vocabulary set dynamicity for instertions and deletions respectively.

Vocabulary information is important since many RDF management systems
use dictionaries to efficiently manage the RDF graphs. Thus, for RDF archiving,
concrete figures must be provided on the evolution of the these sets, with special
attention to their cardinality and dynamicity, given that particular policies could
take advantage of shared RDF dictionaries between versions.

3.2 Design of benchmark queries

As stated, there is neither a standard language to query RDF archives, nor an
agreed way for the more general problem of querying temporal graphs. Nonethe-
less, most of the proposals (such as T-SPARQL [8] and SPARQL-ST [20]) are
based on SPARQL modifications.



In general, previous experiences on SPARQL benchmarking show that bench-
mark queries should report on the query type, result size, graph pattern shape
and query atom selectivity. For query federation, selected sources must be drawn.
Conversely, for RDF archiving, one should put the focus on query dynamicity,
without forgetting the strong impact played by query selectivity in most RDF
triple stores and query planning strategies.

We briefly recall here the definition of query cardinality and selectivity, adapt-
ing the definition in [2, 1] to RDF archives. Given a SPARQL query Q, being
this always a BGP hereinafter, the evaluation of Q over a general RDF graph
G results in a bag of solution mappings [[Q]]G, where Ω denotes its underly-
ing set. The function card[[Q]]G maps each mapping µ ∈ Ω to its cardinality in
[[Q]]G. Then, for comparison purposes, we introduce three main features, namely
archive-driven result cardinality and selectivity, version-driven result cardinality
and selectivity and version-driven result dynamicity, defined as follows.

Definition 9 (Archive-driven result cardinality and selectivity). The
archive-driven result cardinality of Q over the RDF archive A, is defined by

CARD(Q,A) =
∑

µ∈Ω card[[Q]]A(µ).

In turn, the archive-driven query selectivity accounts how selective is the query,
and it is defined by SEL(Q,A) = |Ω|/|A|.

Definition 10 (Version-driven result cardinality and selectivity). The
version-driven result cardinality of Q over a version Vi, is defined by

CARD(Q, Vi) =
∑

µ∈Ωi
card[[Q]]Vi

(µ),

where Ωi denotes the underlying set of the bag [[Q]]Vi
. Then, the version-driven

query selectivity is defined by SEL(Q, Vi) = |Ωi|/|Vi|.

Definition 11 (Version-driven result dynamicity). The version-driven re-
sult dynamicity of Q over two versions Vi and Vj, with i < j, denoted by
dyn(Q, Vi, Vj) is defined by

dyn(Q, Vi, Vj) =
|(Ωi\Ωj)∪(Ωj\Ωi)|

|Ωi∪Ωj |

Likewise, we define the version-driven result insertion dyn+(Q, Vi, Vj) =
|Ωj\Ωi|
|Ωi∪Ωj |

and deletion dyn−(Q, Vi, Vj) =
|Ωi\Ωj |
|Ωi∪Ωj |

dynamicity.

The archive-driven result cardinality is reported as a feature directly inherited
from traditional SPARQL querying, as it disregards the versions and evaluates
the query over the set of triples present in the RDF archive. Although this feature
could be only of peripheral interest, the knowledge of this feature can help in
the interpretation of version-agnostic retrieval purposes (e.g. ASK queries).

As stated, result cardinality and query selectivity are main influencing factors
for the query performance, and should be considered in the benchmark design
and also known for the result analysis. In RDF archiving, both processes require
particular care, given that the results of a query can highly vary in different



versions. Knowing the version-driven result cardinality and selectivity helps to
interpret the behaviour and performance of a query across the archive. For in-
stance, selecting only queries with the same cardinality and selectivity across
all version should guarantee that the index performance is always the same and
as such, potential retrieval time differences can be attributed to the archiving
policy. Finally, the version-driven result dynamicity does not just focus on the
number of results, but how these are distributed in the archive timeline.

In the following, we introduce six different, foundational query atoms to cover
the broad spectrum of emerging retrieval demands in RDF archiving. Rather
than providing a complex catalog, our main aim is to reflect the basic atoms
allowing to gain specific knowledge on RDF archiving, without harming neither
the combination of them in order to serve more complex queries, nor the concrete
implementation in existing languages/archiving policies.

Version materialisation, Mat(Q, Vi): it provides the SPARQL query reso-
lution of the query Q at the given version Vi. Formally, Mat(Q, Vi) = [[Q]]Vi

.

Delta materialisation, Diff(Q, Vi, Vj): it provides the different results of the
query Q between the given Vi and Vj versions. Formally, let us consider that the
output is a pair of mapping sets, corresponding to the results that are present
in Vi but not in Vj , that is (Ωi \Ωj), and viceversa, i.e. (Ωj \Ωi).

A particular case of delta materialisation is to retrieve all the differences
between Vi and Vj , which corresponds to the aforementioned ∆+

i,j and ∆−
i,j .

Version Query, V er(Q): it provides the results of the query Q annotated with
the version label in which each of them holds. In other words, it facilitates the
[[Q]]Vi

solution for those Vi that contribute with results.

Change checking, Change(Vi, Vj): it answers with a boolean value to state if
there is any change between the given Vi and Vj versions. Acknowledging that
this operation could be seen as a particular case of delta materialisation (with
delta results not null), change checking could be implemented in very different
ways depending on the archiving policy, being this of particular importance for
some processes such as data monitoring and data synchronization.

Cross-version join, join(Q1, Vi, Q2, Vj): it serves the join between the results
of Q1 in Vi, and Q2 in Vj . Intuitively, it is similar to Mat(Q1, Vi) ✶ Mat(Q2, Vj).

Change materialisation, Change(Q): it provides those consecutive versions
in which the given query Q produces different results. In other words, it reports
the points in which the query is evaluated differently. Formally, Change(Q)
reports the labels i, j (referring to the versions Vi and Vj) ⇔ Diff(Q, Vi, Vj) 6=
∅, i < j, !∃k ∈ N/i < k < j.



versions |V0| |V57| growth δ δ− δ+ CA OA

58 30m 66m 101% 31% 32% 27% 3.5m 376m

Table 2: Dataset configuration
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Fig. 2: Dataset description.

4 BEAR: Benchmark Description

This section presents our BEAR benchmark, which instantiates our blueprints
in a real-world scenario. We first detail the benchmark data configuration and
the query set covering basic retrieval needs. Next section evaluates the BEAR
benchmark on state-of-the-art archiving policies. All the benchmark data and
queries, together with the implementation of the policies and additional results
are available at the BEAR repository4.

4.1 Benchmark Data

Although evolving RDF data is ubiquitous, few works systematically provide
and maintain a clear and large corpus of RDF versions across time. As such, we
build our RDF archive on the data hosted by the Dynamic Linked Data Observa-
tory5, monitoring more than 650 different domains (containing around 96k RDF
documents) across time and serving weekly crawls of these domains. BEAR
benchmark data are composed of the first 58 weekly snapshots, i.e. 58 versions,
from this corpus.

Each original week consists of triples annotated with their RDF document
provenance, in N-Quads format. In this paper we focus on archiving of a single
RDF graph, so that we remove the context information and manage the resul-
tant set of unique triples, disregarding duplicates. The benchmark extension to
multiple graph archiving can be seen as a future work, as can easily make use of
the proposed blueprints.

Dataset configuration. In order to describe our benchmark dataset, we com-
pute and report the data configuration features (presented in our blueprints in

4 https://github.com/webdata/BEAR
5 http://swse.deri.org/dyldo/



query set lookup position CARD dyn #queries

QS
L-ǫ=0.2 subject 6.7 0.46 50

QP
L -ǫ=0.6 predicate 178.66 0.09 6

QO
L -ǫ=0.1 object 2.18 0.92 50

QS
H -ǫ=0.1 subject 55.22 0.78 50

QP
H -ǫ=0.6 predicate 845.3 0.12 10

QO
H -ǫ=0.6 object 55.62 0.64 50

Table 3: Overview of benchmark queries

Section 3) that are relevant for our purposes. Table 2 lists basic statistics of our
dataset, further detailed in Figure 2, which shows the figures per version.

As can be seen, data growth behaviour (dynamicity) can be identified at a
glance: although the number of statement in the last version (|V57|) is more than
double the initial size (|V0|), the mean version data growth (growth) between
versions is almost marginal (101%). A closer look to Figure 2 allows to identify
that the latest versions are highly contributing to this increase. Similarly, the
version change ratios point to the concrete adds and delete operations. Thus, one
can see that a mean of 31% of the data change between two versions and that
each new version deletes a mean of 27% of the previous triples, and adds 32%.
Nonetheless, Figure 2 (b) points to particular corner cases (in spite of a common
stability), such as V31 in which no deletes are present, as well as it highlights the
noticeable dynamicity in the last versions.

Conversely, the number of version-oblivious triples, 376m, points to a rela-
tively low number of different triples in all the history if we compare this against
the number of versions and the size of each version. This fact is in line with
the aforementioned add and delete dynamicity values around 30%. The same
reasoning applies for the remarkably small static core, OA = 3.5m.

4.2 Benchmark Queries

The challenging task for every benchmark is to provide meaningful and compre-
hensive queries which allow to test a wide set of features. As suggested in the
previous blueprints (Section 3), we decided to start our RDF archiving bench-
mark by sampling atomic lookup queries Q, in the form (SVV), (VPV), and
(VVO), as this could constitute the basis for further and more complex queries.

In order to provide comparable results, we consider entirely dynamic queries,
meaning that the results always differ between consecutive versions. In other
words, for each of our selected queries Q, and all the versions Vi and Vj ( i < j),
we assure that dyn(Q, Vi, Vj) > 0. To do so, we first extract subjects, predicates
and objects that appear in all ∆i,j .

Then, we follow the blueprint suggestions and try to minimise the influ-
ence of the result cardinality on the query performance. For this purpose, we
sample queries which return, for all versions, result sets of similar size, that is,
CARD(Q, Vi) ≈ CARD(Q, Vj) for all queries and versions. We introduce here
the notation of a ǫ-stable query, that is, a query for which the min and max re-
sult cardinality over all versions do not vary by more than a factor of 1± ǫ from



raw data(gzip) diff (gzip) IC CB TB

23GB 14GB 225GB 196GB 353GB

Table 4: Space requirements for the different policies.

the mean cardinality, i.e., max∀i∈N CARD(Q, Vi) ≤ (1 + ǫ) ·
∑

∀i∈N
CARD(Q,Vi)

|N |

and min∀i∈N CARD(Q, Vi) ≥ (1− ǫ) ·
∑

∀i∈N CARD(Q,Vi)

|N | .

Thus, the previous selected dynamic queries are effectively run over each
version in order to collect the result cardinality. Next, we split subject, objects
and predicate queries producing low (QS

L, Q
P
L , Q

O
L ) and high (QS

H , QP
H , QO

H)
cardinalities. Finally, we filter these sets to sample at most 50 subject, predicate
and object queries which can be considered ǫ-stable for a given ǫ. Table 3 shows
the selected query sets with their epsilon value, mean cardinality and mean
dynamicity. Although, in general, one could expect to have queries with a low
ǫ (i.e. cardinalities are equivalent between versions), we test higher ǫ values in
objects and predicates in order to have queries with higher cardinalities. Note
that even with this relaxed restriction, the number of predicate queries that fulfil
the requirements is just 6 and 10 for low and high cardinalities respectively.

5 Implementation and Evaluation

In this section we present our evaluation on the performance of state-of-the-art
archiving policies with respect to the retrieval functionality defined in BEAR.
To do so, we have developed a proof-of-concept scenario and implemented the
IC, CB and TB policies (and their mediators) using Jena‘s TDB store.

For the IC policy, we index each version in an independent TDB instance.
Likewise, for the CB policy, we create an index for each added and deleted
statements, again for each version and using an independent TDB store. Last,
for the TB policy, we followed the approach of [26, 9] and indexed all deltas using
named graph in one single TDB instance.

5.1 Space Results

Table 4 shows the required on-disk space for the raw data, the GNU diff and
the different policies. As can be seen, raw gzipped data of all 58 versions takes
roughly 23G disk space, while storing the diffs information requires 14G. A
comparison of these figures against the size of the different policies allows to
describe their inherent overheads. Thus, the IC policy indexing (in TDB) requires
roughly ten times more disk space than the raw data, mainly due to the data
decompression and the built-in TDB indexes. In turn, CB occupies 14 times
the diff data but, as expected, it reduces the space needs w.r.t IC (15% less).
Finally, TB reports the highest size as it requires 57% and 80% more space than
IC and CB respectively. Note that, although CB and TB policies manages the
same delta sets, TB uses a unique TDB instance and stores named graph for the
triples, so additional “context” indexes are required.

These initial results confirm current RDF archiving scalability problems at
large scale, where specific RDF compression emerges as an ideal solution [7].
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Fig. 3: Query times for subject/object Mat queries.

5.2 Retrieval Performance

Next, we evaluate the overall retrieval performance of the archiving policies.
From our blueprints, we chose three exemplary query operations: i) version ma-
terialisation, ii) delta materialisation and iii) version queries, and we apply the
selected BEAR queries (cf. Section 4.2) as the target query in each case.

In general, our evaluation confirmed our assumptions and assessments about
the characteristics of the policies (cf. Section 2). The IC and TB policies show
in general a very constant behaviour for all our tests, while the retrieval time of
the CB policy decreases if more deltas have to be queried. The main difference
between IC and TB is the slightly higher retrieval time of TB due to the larger
index size. Next, we present and discuss selected plots for each query operation.

Version materialisation. We measure and compute, for each version, the
average query time over all queries in the BEAR query set. The results for the
version materialisation queries show very similar patterns for the subject and
object query sets. As such, we present in Figure 3 only the results for the subject
and predicate queries. We can observe in all plots that the IC policy provides
the best and most constant retrieval times. The TB policy has to query more
indexed data than the IC policy and as such shows higher time than the IC. The
CB policy shows a clear trend that the query performance decreases if we query
a higher version since more deltas have to be queried and the adds and delete
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Fig. 4: Query times for Diff queries with increasing intervals.

information processed. Also interestingly, CB and TB have similar performances
if the queries have higher cardinalities and higher versions are queried.

Delta materialisation queries. We performed two different experiments.
First, we perform diffs for all two consecutive versions, i.e., diff(Q, Vi, Vi+1)
for i in [0,57]. Then, we perform diffs between the initial version and increasing
intervals of 5 versions, i.e., diff(Q, V0, Vi) for i in {5, 10, 15, · · · , 55, 57}. For the
sake of clarity and space, we omit here the plots for the former evaluation since
the results are similar but much more appreciable in the second evaluation. Fig-
ure 4 shows again the plots for some selected query sets. Conversely, we observe
the expected constant retrieval performance of the IC policy which always needs
to query only two version to compute the delta in-memory. We can see that the
query time decreases for the CB policy if the intervals of the deltas are increas-
ing, given that more deltas have to be inspected. In turn TB behaves similar
than the Mat case given that it always inspects the full TDB instance.

Version queries. Finally, we report the results for the version queries, sum-
marised in Table 5. We report the average query time over each ver(Q) query per
BEAR query set. As can be seen, the TB policy outperforms IC and CB policies
in contrast to the previous Mat and Diff experiments. This can be explained
since both, IC and CB, require to query each version, while TB requires only
one query over the full store and then splits the results by version.



Query set IC TB CB

QS

L 55.70 27.32 122.44
QS

H 71.62 61.46 144.12

QP

L 304.67 237.83 412.17
QP

H 733.80 362.20 523.90

QO

L 40.54 22.78 91.92
QO

H 78.18 73.54 136.30

Table 5: Average query time (in ms) for ver(Q) queries

6 Conclusions

RDF archiving is still in an early stage of research. Novel solutions have to face
the additional challenge of comparing the performance against other archiving
policies or storage schemes, as there is not a standard way of defining neither a
specific data corpus for RDF archiving nor relevant retrieval functionalities.

This paper tackles these shortcomings and provide a blueprint to guide future
benchmarking of RDF archives. First, we formalize dynamic notions of archives,
allowing to effectively describe the data corpus. Then, we describe the main
retrieval facilities involved in RDF archiving, and we provide guidelines on the
selection of relevant and comparable queries. We instantiate these blueprints in a
concise benchmark called BEAR, serving a clean, well-described benchmark cor-
pus, and a query testbed composed of basic, but well-addressed, retrieval queries.
Finally, we implement and evaluate three state-of-the-art archiving policies. Re-
sults clearly point weakness (specially in scalability) and strengths of current
archiving policies, guiding future developments.

We currently focus on exploiting the presented blueprints as basis to generate
diverse synthetic benchmark data. Furthermore, we work on novel archiving
representations to minimize its representation through compression techniques.

Acknowledgments

The research work of Javier D. Fernández is funded by Austrian Science Fund
(FWF): M1720-G11.

References
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